
SOK: On the Analysis of Web Browser Security
Jungwon Lim*, Yonghwi Jin*†, Mansour Alharthi, Xiaokuan Zhang,

Jinho Jung, Rajat Gupta, Kuilin Li, Daehee Jang‡, Taesoo Kim
Georgia Institute of Technology †Theori Inc. ‡Sungshin Women’s University

Abstract—Web browsers are integral parts of everyone’s daily
life. They are commonly used for security-critical and privacy
sensitive tasks, like banking transactions and checking medical
records. Unfortunately, modern web browsers are too complex to
be bug free (e.g., 25 million lines of code in Chrome), and their
role as an interface to the cyberspace makes them an attractive
target for attacks. Accordingly, web browsers naturally become
an arena for demonstrating advanced exploitation techniques by
attackers and state-of-the-art defenses by browser vendors. Web
browsers, arguably, are the most exciting place to learn the latest
security issues and techniques, but remain as a black art to most
security researchers because of their fast-changing characteristics
and complex code bases.

To bridge this gap, this paper attempts to systematize the
security landscape of modern web browsers by studying the
popular classes of security bugs, their exploitation techniques,
and deployed defenses. More specifically, we first introduce a
unified architecture that faithfully represents the security design
of four major web browsers. Second, we share insights from a
10-year longitudinal study on browser bugs. Third, we present a
timeline and context of mitigation schemes and their effectiveness.
Fourth, we share our lessons from a full-chain exploit used in
2020 Pwn2Own competition. We believe that the key takeaways
from this systematization can shed light on how to advance the
status quo of modern web browsers, and, importantly, how to
create secure yet complex software in the future.

I. INTRODUCTION

Web browsers play an integral role in the modern, Internet-
connected lifestyle. We rely on web browsers to pay mortgages,
schedule vaccines, and connect to people worldwide. In other
words, web browsers become the gatekeeper to cyberspace,
and their insecurity is a critical threat to the safety, fairness
and privacy of our society. Unfortunately, web browsers have
been the most attractive, valuable target of cyber attacks—
50% of 0-day exploits found in the wild were attacking web
browsers in 2021 [58] and threatened every single person on
the Internet [103], [141], [195], [196], [211], [230], [231].

Accordingly, modern web browsers naturally become a
battlefield for attackers who wish to break in with novel exploit
techniques, and browser vendors who want to keep users safe
with the most advanced mitigation schemes. Browser vendors
are indeed the essential players that advance modern security
practices by 1) open sourcing not only the current architecture
and code but also the design process itself [45], [52], [210]; 2)
introducing bug bounty awards to encourage the discovery of
0-day bugs [116], [176]; and 3) proactively finding exploitable
bugs by developing and running state-of-the-art fuzzers on the
cloud [109], [111].

Unfortunately, detailed design decisions for security and
insights on new mitigations against novel exploitation are

often considered as a black art, keeping their lessons learned
within the web browser community. This is partly because of
their complex architecture, fast-changing implementation, and
overwhelming size of code bases, but mainly because it is non-
trivial to systematize the knowledge of all major web browsers
coherently and objectively simultaneously. Experts from each
browser vendor have attempted to provide their perspectives
on security design and decisions, e.g., Chrome [44], IE [51],
Firefox [54]. Previous industry reports published in 2017 [90],
[226] mainly focus on describing individual techniques and
defenses in an ad-hoc, as-it-is manner without developing
academic perspectives or providing insights and lessons that
are useful to envision the next directions for the community.

This paper makes a bold attempt to systematize the security
landscape of modern web browsers. We first provide a unified
model of four major web browsers as they pertain to security,
and compare and contrast their security decisions by using the
provided model. Second, based on the model, we analyze
security bugs found in each open source browser in the
last 10 years, and show their relation to the development of
new mitigation schemes, bug bounty programs, and known
exploitation techniques used in the wild. Third, based on our
study, we convey our insights and lessons to inspire researchers
and developers who are shaping the future of web browsers.
We hope that our systematization attempt can help them to
understand the approaches of each vendor in a holistic manner
and thus enhance their security designs to minimize security
impacts and attack surfaces.

Challenges. Three unique characteristics make it challenging
to systematize the knowledge of web browser security.

1) A moving target. Browser vendors make decisions rapidly
(e.g., weekly updates) and their development is at a much
faster pace than any other software that humans have
built. To infer insightful lessons, we strive hard to stay
focused on fundamental design issues and approaches in
web browsers.

2) Overwhelming size. Modern web browsers are built with
a few million lines of code, e.g., Chrome consists of 25
million lines of code [16]. In addition to the project size,
information on web browsers, such as 0-day exploits and
mitigations, is scattered all over the Internet and fails to
provide a holistic summary and overview of the security
landscape. In this paper, we limit our interest to the four
major web browsers, namely, Chrome, Firefox, Safari, and
Edge, and study multiple, public sources for their security
issues: issue trackers [43], [48], CVE reports [2], [4], [5],

ar
X

iv
:2

11
2.

15
56

1v
1

 [
cs

.C
R

]
 3

1
D

ec
 2

02
1

Renderer
(Origin 1)

Renderer
(Origin 2)

Site isolation

Browser

Safari (WebKit/JavaScriptCore)Chrome (Blink/V8)

Tab A

Renderer
Tab B

Network

GPU

Services

Renderer
Tab A

Renderer
Tab B

Browser

Network

GPU

Plugins

Plugins

Firefox (Gecko/SpiderMonkey)

GPU
(Windows)

Internet Explorer (Trident/Chakra)

Browser
(management)

Renderer
Tab A

Renderer
Tab B

Browser
(interface)

Socket

Media

Extension

Renderer
Tab A

Renderer
Tab B

Tab C

Renderer
Plugin

Browser Renderer
(localhost)

Tab D

Fig. 1: Internal architecture of four major web browsers. All browsers deploy a sandbox (pink region) to restrict the renderer, while the
detailed sandboxing methodology differs based on the underlying OS. There are subtle but important differences across browsers.

[7], [9], [11], [12], [14], [55], code repositories [30], [45],
[52], [60], and technical reports from the vendors [49],
[58], [65], [67], [79], [86], [152], [161], [163], [170],
[171], [204], [208], [230], [231].

3) Unique designs. It is also important to provide an
objective perspective on their security issues; each browser
has its own restrictions and requirements in making
decisions (e.g., release deadline), and it is critical to focus
on the fundamental issues that our community can learn
from. To solve this, we provide a unified architecture that
compares and contrasts each browser’s design conceptually
without compromising their implementation details.

Contributions. This paper makes the following contributions:
• Provide a detailed comparison of modern browser archi-

tectures in terms of sandboxing schemes;
• Present a 10-year longitudinal study on browser bugs;
• Categorize browser vulnerabilities with detailed analysis;
• Study state-of-the-art generic mitigations on browsers;
• Perform a detailed study on a real-world full-chain exploit.

Non-goals of this SoK. The main focus of this study is
web browser security, concerning the security of its own
vulnerabilities. We do not consider other web-related security
problems, like web or web server security issues such as Cross-
Site Scripting (XSS), SQL Injection, etc. Note that although
Universal Cross-Site Scripting (UXSS) [166] sounds similar to
XSS, it commonly originates from problems in the browser’s
implementation and design, so it is considered web browser
security (§III-E).

II. MODERN BROWSER ARCHITECTURE

This section provides a unified model of each web browser
that enables an objective comparison of their approaches.

A. Overview

Modern web browsers adopt the principle of least privilege
by using an OS process as a protection domain. By using the
process domain, each web browser can be described using
three types of processes, namely, a browser process (marked
in green), renderer processes (marked in magenta), and task-
specific processes (marked in yellow), as shown in Figure 1.
Browser process. When a web browser launches, the browser
process runs with the same privilege level as the user (i.e., a
higher privilege) and passes a sandbox profile to the OS to
restrict the privileges of other processes to be spawned with
(i.e., a lower privilege). It manages all child processes (e.g.,

renderer) and is the only process that directly interacts with
users via system calls (and a user interface).
Renderer process. This process is responsible for parsing and
rendering the untrusted web content. The ever-growing kinds
of data served on the web have caused the renderer process to
include a wide variety of components, such as media parsers,
DOM and JS engines. Since they are major sources of browser
bugs, they are confined in a restrictive sandbox (see §II-C).
The renderer processes are typically spawned per browser tab
or per web page origin. The isolation policy of each renderer
varies by security policy or features (e.g., site isolation) of
each web browser, available resources at runtime (e.g., low
memory in mobile), or even user configuration.
Other process. A modern browser’s architecture is highly
modular. This modular design enables browsers to have
different privilege levels based on the process’s role. Services
that interact with external drivers (e.g., networking or GPU
processes) are isolated as a separate process, which enables
more restrictive sandboxing for the processes that don’t require
such access like renderer process. Web browsers also commonly
put extensions and plugins in separate processes. This protects
plugins that are at a higher privilege level from malicious web
content, and protects browsers from being hijacked in the case
of a malicious plugin.
Inter-Process Communication (IPC). Since these processes
cannot directly access each other’s memory, they always com-
municate via IPC channels provided by the OS, and communi-
cations are usually mediated by the browser (broker) process. In
other words, the browser process works as a reference monitor
that restricts direct accesses to important data or high-privileged
operations (e.g., cookies or system calls) from other processes.
Thanks to this multi-process architecture, an attack is always
initiated from a low privileged process like a renderer process,
and the attacker’s goal is to break into the browser process run-
ning as a user’s privilege. At the same time, it makes it possible
to recover from crashes caused by a benign bug in the renderer
process, making the browser resilient against stability issues.
Same-Origin Policy (SOP). In reality, websites consist
of contents from numerous sources with varying origins,
e.g., using CDN for common JavaScript libraries, embedding
external sites via iframes, or enabling a like button from a social
network. The complex nature of websites leads to numerous
security policies and unique features of each web browser.
Based on the origin of each website [94], the browser process
and the renderer process restrict which resources (e.g., cookies)

2

a web page is allowed to interact with, which is the same-origin
policy (SOP) [94].

B. Differences in Browsers

The so-far discussed design is equally applied to all four
major browsers. However, as shown in Figure 1, some im-
plementation details differ depending on the design of the
browsers and their underlying operating systems. For example,
the GPU processes in Chrome and Safari are separated from the
renderer processes, with a sandbox profile that enables them to
access the platform 3D APIs [67] (see §II-C). Also, Chrome,
Firefox, and Safari each has a separate process to handle the
network service, while the Chrome network service is placed
outside the sandbox. Chrome team is currently implementing
the sandbox of its network service [28].
Site isolation. The sandbox mechanism can indeed protect
browsers; however, with the discovery of universal cross-site
scripting (UXSS) attacks, it turned out that attackers could
steal user data without needing to escape the sandbox. To
address such attacks, the Chrome team came up with Site
Isolation [186] to further separate different site origins into
different processes. It creates a dedicated process for each
site origin, so that there is no implict sharing among different
origins. Site isolation is an effective measure to address UXSS,
but it is also beneficial for preventing hardware-based transient
execution attacks [137], [147]. Firefox has a similar project
named Fission [175], and it is shipped in Firefox 88 Beta [174].
JavaScript engines. JavaScript engines are the core of modern
browsers, which convert JavaScript code into machine code.
Major browsers use just-in-time (JIT) compilation [36] [34] [33]
to speed up the code execution. Also, JIT compilers model
the result and side-effects of all operations and run various
analysis passes to optimize the code. If any of these goes
wrong, native code with memory corruption issues can be
emitted and executed, which can lead to severe security
implications [26], [121]. While each engine has different
implementations, they share similar design principles and have
common attack surfaces (§III-D). Therefore, attackers can build
generic attack primitives which work across different engines,
such as fakeobj and addrof primitives [154], [189] and element
kind transitions [153], [190]. JavaScript engines are being used
outside browsers as well (e.g.Node.js uses V8), amplifying
the impact of security bugs in JavaScript engines. We discuss
issues caused by homogeneous browser engines in §VI-A.
Rendering engines. Rendering engines are responsible for
interpreting resources and rendering webpages. Each of the
four major browsers has its own rendering engine: Safari uses
WebKit; Chrome uses Blink (forked from WebKit); Firefox
uses Gecko; Edge uses Blink (replacing EdgeHTML). Web
Standards [219], [224] serve as baseline specifications and
references for browser vendors to implement their rendering
engines. Since Web Standards continuously evolve with new
features, there are rapid changes in rendering engines, i.e.,
implementing new features or dropping deprecated ones. Due
to different decision process and implementation strategy, the

feature sets implemented in the rendering engines in different
browsers are quite different [42], resulting in different attack
surfaces [228]. We discuss the attack surfaces in §III.

C. Variances in Sandbox Schemes

The sandbox restricts the program execution from deviating
from its intended mission. However, the underlying technol-
ogy and architecture for building a sandboxed environment
significantly differs among OSes. To examine the internals
of sandbox implementations, we 1) audit the source code
of browsers, 2) monitor the behavior of the sandbox APIs,
and 3) analyze the predefined sandbox policy file (e.g., Safari
browser’s configuration). We summarize our findings in Table I.

Categorizing sandbox primitives. In Table I, we categorize
sandboxing primitives into three categories based on their roles:
a) privilege reduction applies more restricted privileges to the
sandboxed processes using the permission system of platforms
such as DAC/MAC; b) domain separation allocates a separated
space of resources that a sandboxed process will have access to;
c) attack surface reduction limits accesses to system services,
kernel or device drivers.

Browser-specific characteristics. Browser vendors utilize
different primitives depending on the given constraints (e.g.,
available memory). For example, Site Isolation prevents RCE
exploits to be transformed into UXSS or sandbox escapes by
putting an origin-wise, process-level security boundary between
a compromised renderer and privileged web pages [107], [108].

OS-specific behaviors. We also compare the sandbox features
from different OSes, namely, Windows, Linux and macOS.

Windows. Windows restricts each process by using a security
token [117]. Similar to the capability-based model, a process
obtaining a certain token level can access privileged resources
with proper security descriptor level. For example, the renderer
process runs with a low integrity token level, and the broker
process runs with a medium integrity token level, so any write
accesses from a renderer process to the broker process will
be restricted by default.

However, there is no unified protocol for fine-grained access
control. To resolve this, Chrome and Firefox support fine-
grained rulesets using their own IPC mechanisms and binary-
level code patches on resource-related functions [117]. Mi-
crosoft introduced AppContainer in Windows 8 to enforce more
fine-grained access control to resources by adding a notion of
capabilities attached to process tokens. Edge created a sandbox
based on AppContainer [89]. Starting from the deny-by-default
policy, Edge created a set of capabilities for required system
resources. Chrome is also experimenting with an AppContainer-
based sandbox [28]. Browsers also utilize various features for
mitigating sandbox escape. For example, alternate desktop and
alternate window station can be used to mitigate UI-based
attacks such as Shatter [180]; lockdown default DACL [24] and
Random Restricting SIDs [38] were introduced to enforce more
restricted DACLs, so that compromised sandboxed processes
cannot access other sandboxed processes.

3

Legend†: GMP: Gecko Media Plugin, UNT: Untrusted, MED: Medium, LMT: Limited, LKD: Lockdown, NAD: Non-Admin,
LTU: Limited User, IZG: Inherited from Zygote, BSC: seccomp-BPF + Sandboxed IPC

Integrity†

AppContainer

Access token level†

Hardened token

Job level†

NS:User†

Chrome Firefox SafariEdge
Zygote

Renderer

Storage

Flash
NaCI

GPU
Network

Audio

Crashpad

Sandboxed

Content

M
edia

GM
P†

Socket

NPAPI

GPU
Network

Internet

Extension

Flash
Flash

GPU

W
ebProcess

P
ri

vi
le

ge
 r

ed
uc

ti
on

Site Isolation

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓ ✓ ✓

✓ ✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓ ✓ ✓
✓

✓ ✓ ✓
✓ ✓ ✓

UNT Low MED Low MED Low

✓ ✓ ✓
LMT LKD

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
None

✓ ✓ ✓ ✓

of allowed Mach services

of allowed IOKits

10 7 6 25 16 10 14 9 1 4 55 53 56 54

218115017102013213

Origin Origin Tab Zone Zone Zone

UNT UNT UNT UNT UNT MED MEDLow Low Low Low

LMT LMT LKD LMT LKD LKD NAD LMT

LKD LKD LKD LKD LKD LKD LKDLTU LTU

IZG IZG IZG

Lockdown default DACL
Random restricting SIDs

Alternate desktop

Alternate window station

NS:Network†

NS:IPC

NS:PID

Chroot

D
om

ai
n

se
pa

ra
tio

n

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
✓✓✓✓✓✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
✓✓✓✓✓✓✓✓✓

✓✓ ✓ ✓ ✓ ✓ ✓
✓
✓ ✓

✓✓✓
✓ ✓ ✓ ✓ ✓

IZG IZG

Win32k lockdown

Disable non-system font

Hypervisor based sandboxing

System call allowlisting†

System call allowlisting

A
tt

ac
k

su
rf

ac
e

re
du

ct
io

n

✓ ✓ ✓ ✓
✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓
✓

BSC BSC BSC BSC BSC BSCBSC

TABLE I: Sandbox comparison (Chrome, Firefox, Edge, Safari on Windows, Linux, MacOS)

Linux. Unlike on Windows, the Linux sandbox is mainly
based on seccomp, chroot and namespace. First, seccomp is a
standard system call filter based on the eBPF language. Since
the default seccomp configuration is overly tight, browsers
define their own filtering rules. For example, Chrome applies
its custom seccomp rules to all processes except the broker
process, and the detailed rules vary for each process. Second,
to restrict file access, Linux-based browser sandboxes utilize
chroot jailing. Once a process is confined with chroot, no upper
hierarchy of the file system is reachable. For example, Firefox
applies chroot jailing to all renderers and only allows them to
access specific files based on file descriptors obtained from the
broker process. Also, browsers use namespaces [74] to create
separated spaces for various resources, such as user, networking,
and IPC. For example, creating and joining a user namespace
enables a sandboxed process to be in a separate UID and GID,
effectively disabling access to other unsandboxed processes.

macOS. While Windows and Linux support various types of
sandboxing primitives, macOS supports a specifically formatted
sandbox profile (.sb) [75] to describe the sandbox policy for
a given process. Typically, the file provides an allowlist of
absolute file paths that are allowed to be accessed and blocks
all other file accesses by default. The profile also defines the
capability of accessing other resources such as network and
shared memory, and supports systemcall-based filtering like
Linux’s seccomp, though it is only deployed on Safari.

Mobile platforms. Since a process-based sandbox uses a non-
trivial amount of memory, mobile platforms introduce subtle
differences in sandbox policies or disable them depending
on the available resources. For example, on Android, Site

Isolation in Chrome is enabled only when the device has enough
memory (>1.9GB), and the user need to enter passwords on
the website [77]. On iOS, Safari uses sandbox rules that are
different from macOS because different system services and
IOKit drivers are exposed on mobile. Due to such differences,
some exploits may work only on mobile platforms [152].

D. Exploiting Browsers

The goal of browser exploitation is to steal sensitive data
from its user or to install malware for further action. Attackers
can execute attacks like UXSS to directly steal data, or get
a code execution first and then try to escape the sandbox.
An attacker might attempt to gain a system’s privilege and
escape the sandbox by attacking the kernel, which is out of
the scope of this paper. Thanks to various mitigation schemes
(see §III,§IV), an attacker should chain multiple bugs (e.g., 4
bugs until sandbox escape [134]) together to gain an arbitrary
execution. Even after the control-flow is hijacked, since the
renderer process runs inside the sandbox, the attacker should
find another set of bugs in the broker process to escape the
sandbox. Depending on exploits available in one’s arsenal, an
attacker often attempts to exploit a bug in the system services,
drivers, or the kernel instead of the broker process to break
out of the sandbox [155].

III. BROWSER VULNERABILITIES AND MITIGATIONS

In this section, we first perform a measurement study
on publicly reported browser bugs in the past decade to
reason about the trends and then present dominant types
of vulnerabilities (e.g., JavaScript engine bugs) and their
corresponding mitigations deployed by the vendors.

4

Arbitrary execution

Memory corruption bugs

Stack corruption

Heap corruption

Uninitialized var

Integer overflow

Use after free

Overflow checked
operation

Heap spray

Logic bugs

JS engine bugs

JIT analysis bugs

JIT code generation bugs

Non-JIT side-effect bugs

UXSS bugs

Parser logic abuse

Origin check bypass

Incorrect context

Emit native code with
memory corruption

Arbitrary R/W

AddrOf & FakeObj

Abuse unchecked
StructureID

GigaCage PACCage

Overwrite RWX for JIT
Overwrite

critical data

In-order execution

Out-of-order execution

ACG

Code signing

Overwrite vftable

VTGuard

Compromise instruction pointer

Compromise forward-edge CF

Compromise backward-edge CF

PAC

Overwrite funcptr

CFG

Overwrite retaddr
Overwrite saved
CTX/EH struct

encoding

NX

Perform malicious action

Sandbox

RCE to UXSS

Site isolation

Corrupted array Execute code

Execute data

SEHOP

SafeSEH

Hardened JIT mapping

Out-of-process JIT

Delayed free

Isolated heap

Heap metadata
protection

Type check

Type confusion

Vulnerbility

Mitigation

Attack
Attack primitive

Exploit path

Exploit example

Fig. 2: Browser exploitation scenarios and bug classification. We mainly focus on browser security-specific issues and omit basic software
attack/defense techniques such as ROP, NX and ASLR. The Exploit example arrows depict the exploit path described in §V.

Firefox† Chromium† Safari/WebKit‡ Edge/IE‡

(1) Total CVEs 2190 2582 1436 2278
(2) Collected CVEs 2066 1912 1436 2278

(3) Pwn2Own [61] 14 9 37 31
(4) Google P0 [58] 7 22 8 22

TABLE II: (1) The total number of CVEs in the NVD database [55].
(2) The number of collected bugs. For open source browsers†,
we collected extended bug information from vendors’ bug trackers
[48] [43]. For those browsers, we ignored confidential bugs and bugs
not linked to bug tracker issues. For closed source browsers‡, we
used NVD [55] as the sole source of CVE data. (3) & (4) are the
sources used to collect data of exploited bugs.

A. Trends of Browser Bugs

Data collection. We study public CVEs and vulnerability
reports for four major browsers: 1) routinely updated security
advisories from ’browser vendors [53], 2) public issue trackers
released by vendors [43] [48], 3) open source code repositories
that have a convention of linking bug-fixing commits to pub-
lished vulnerabilities [30] [45] [60] [52], 4) CVE reports in the
National Vulnerability Database (NVD) [55], 5) security bugs
used in real-world exploits such as bugs used in Pwn2Own [61],
and Google Project Zero reports [49], [58]. Table II summarizes
the yield of our data collection efforts.
Bugs and codebase size. Figure 3 shows the sharp increase
of security bugs in all browsers, specifically starting after 2010.
We correlate this increase in bugs to the ever-growing codebase
of browsers, as new features are added constantly. In addition,
the advances in bug-finding techniques after 2010 played a
considerable role, which we highlight in §VI-C.
Dynamic attack vectors. The enormous size and the contin-
uously changing nature of browsers make the attack vectors
change constantly. For the open source browsers, Firefox and
Chromium, we map bugs to their respective host components
and bug classes in Figure 4. For both browsers, we use the

2000 2004 2008 2012 2016 2020
Year

0

500

1000

1500

2000
N

um
be

r o
f b

ug
s

Browsers bugs
Firefox
Chromium
Edge/IE
Safari

0
5M
10M
15M
20M
25M
30M
35M
40M
45M
50M
55M

#L
oC

Browsers #LoC
Firefox
Chromium

Fig. 3: Left y-axis: number of security bugs; Right y-axis: LoC of
two open-source browsers: Firefox and Chromium. LoC is based on
the first major version bump each year.

developer’s assigned flairs to map bugs to their host browser
components, and we use keyword matching in bug descriptions
to categorize their classes.

Renderer bugs are dominant in both Firefox and Chromium
since renderers are the core of browsers. The rise of URL
spoofing bugs for Chromium since 2016 highlights the ease
of finding bugs in previously unexplored areas. Memory bugs
in general, and UAF bugs specifically, remain the greatest
common denominator bug class for both browsers.

Another general observation is the varying number of bugs
across the two browsers along the years in both dimensions.
For example, for bug components, Chromium has more DOM
& HTML bugs recently, but the number of DOM & HTML
bugs is decreasing for Firefox. For bug class, in 2019 most of
the bugs in Chromium were classified as UAF, OOB, and URL
spoofing bugs, but Firefox depicts a relatively uniform bug
distribution across the years. Thus, this discrepancy visualizes
not only the changing attack vectors, but also the changing
policies of triaging security bugs for different browsers.

5

'11 '12 '13 '14 '15 '16 '17 '18 '19 '20

Renderer (DOM & HTML)

Renderer (Graphics)

JS Engine

Renderer (Media)

Networking

Renderer (CSS)

Renderer (WebRTC)

Extensions and Plug-ins

Renderer (SVG)

Security UI

Security and Privacy

Renderer (Other)

Firefox

'11 '12 '13 '14 '15 '16 '17 '18 '19 '20

Chromium

(a) Browser Components

0.0

0.2

0.4

0.6

0.8

1.0

'11 '12 '13 '14 '15 '16 '17 '18 '19 '20

Firefox

'11 '12 '13 '14 '15 '16 '17 '18 '19 '20

UAF

UXSS

Out of Bounds

XSS

Race Condition

Integer Overflow

URL Spoofing

Uninitialized Memory

Type Confusion

CSP

Double Free

Other Memory Errors

Chromium

(b) Bug Classes

Fig. 4: Mapping of bugs to host browser components and bug classes in Firefox and Chromium. The figure highlights the changing nature of
browsers’ attack surfaces year-on-year. The numbers in each figure are Min-Max scaled.

Browsers’ efforts against bugs can also be identified in the
figures. Chromium’s Site Isolation [39], [186] as mitigation to
UXSS bugs led to the apparent decrease of said bugs after Site
Isolation was implemented in 2017 (Figure 4b). Some parts
remain as the main source of bugs such as the DOM & HTML
component, which we detail in §III-C.

Memory-safe language. Memory-safety bugs are critical and
dominant in browsers. For example, Chromium labels over
70% of their high severity bugs as memory-safety issues,
half of which are UAF bugs [50]. We show the ratio of
memory-safety bugs in browsers in Figure 5. As shown in
the figure, memory-safety bugs remain dominant for the past
decade despite existing mitigations [212] [59]. Recently, there
have been efforts in rewriting browsers using memory-safe
languages (e.g., Rust) to mitigate memory-safety bugs. For
example, Mozilla is rewriting parts of Firefox in Rust with
an ongoing project called Oxidation [57]. Up until 2020, the
Oxidation project had replaced 12% of Firefox’s components
with Rust equivalents. Five of the replaced subcomponents fall
under the renderer’s media parsing component. We also plot
the number of memory-safety bugs in the renderer’s media
parsing component in Figure 5. It is clear that the number of
memory-safety bugs in Firefox has shown a small but steady
decline since Oxidation started in 2015, with a noticeable drop
in memory-safety bugs in the renderer’s media component.
Despite several attempts from browser vendors to counter
memory safety issues, none of them resulted in a high impact
like Firefox’s Oxidation.

Lesson 1: Using memory safe languages is an effective
mitigation against memory-safety bugs.
As shown in Figure 5, the use of Rust in Firefox effectively
reduces the memory safety bugs. Though it takes a lot of
effort, it is a fundamental way, and the most promising way
to eliminate memory safety bugs. We suggest that other
browser vendors follow this best practice, and gradually
shift their browsers to memory-safe languages.

Bug bounty programs. Major browser vendors such as
Google provide rewards for proper security bug reports that help
them to fix vulnerabilities [116]. In most cases, these payouts
account for multiple factors such as bug type, exploitability,

and significant additional effort made by the reporter. Higher
payouts indicate higher incentives for researchers and whitehats
to find bugs. We correlate the average payout amounts per year
to the yearly number of bugs in Chromium in Figure 6. We
particularly show memory-safety, UXSS, and URL spoofing
bugs since they depict interesting patterns with respect to their
payout amounts.

Payout amounts have an influence on the number of bugs
found for respective classes (Figure 6). Bug classes that have
had average bounty amounts above the overall average amount
(e.g., UXSS in 2014-2016 and Mem bugs in 2017-2020) seem
to increase in numbers on those exact years. This correlation
does not work both ways, however: an increase of the number
of bugs of a certain class does not encourage higher bounty
amounts. This figure further emphasizes other important factors
that guide researchers’ efforts while looking for bugs besides
seeking higher payouts, such as 1) seeking the perks of
exploring uncharted attack vectors (URL spoofing), 2) aiming
for bugs with higher impact (UXSS increased in 2016), and
3) avoiding bug classes that have effective mitigations (Site
Isolation released in 2017 and UXSS bugs decreased in 2018).

Lesson 2: Higher payouts motivate more bug reports.
Browsers try to increase coverage and payout of bug
bounty programs, which led to more bug reports. Therefore,
increasing bug bounty payouts can effectively attract the
interest of security researchers and reduce attack surfaces.

Divergence of bug severity ratings. The Common Vul-
nerability Scoring System (CVSS) [46] was developed as a
free and open source standard for bug severity assessment.
The National Vulnerability Database [55] uses the CVSS
standard to provide bug severity base scores for each issued
CVE number. Similarly, Firefox and Chromium provide an
assessment of a bug’s severity in their bug trackers [43] [48] and
security advisories [53] but use their own bug rating systems.
Table III compares the bug severity assessments of NVD’s
CVSS-V3 against those of Firefox and Chromium. The aim
of this study is to measure the effectiveness of using NVD’s
CVSS-V3 scores as a unified scale for bug severity in browsers.

In the table, we notice a divergence between the rating
systems (Vendor vs. NVD). NVD rates more than half of

6

'11 '12 '13 '14 '15 '16 '17 '18 '19 '20
0

100

200

300

400

500

600

700

800
N

um
be

r o
f b

ug
s

ALL-Mem
ALL-Other
Firefox-Mem
Firefox-Other
RM-Mem

Fig. 5: The number of memory-safety bugs vs.
other bugs in Firefox and other browsers. RM-
Mem is the number of memory-safety bugs
in the media parsing component in Firefox’s
renderer, depicting a decline after it was
partially rewritten in Rust starting in 2015.

2K

4K

6K

8K

A
ve

ra
ge

 p
ay

ou
t (

$)

'11 '12 '13 '14 '15 '16 '17 '18 '19 '20
0

100

200

300

N
um

be
r o

f b
ug

s

Mem
UXSS
URL Spoofing
All

Fig. 6: Correlations between average payout
amounts (top chart) to the yearly number of
bugs in Chromium (bottom chart). The red
area is the average bounty amount for all
classes1. Bug classes crossing the red area
indicate a higher bounty than the average.

'11 '12 '13 '14 '15 '16 '17 '18 '19 '20

0

10

20

30

40

A
cc

um
ul

at
ed

 n
um

be
r o

f b
ug

s

Components
JS Engine
Renderer (DOM & HTML)
Renderer (Media)
Renderer (SVG)

Classes
UAF
Out of Bounds
Type Confusion
UXSS

Fig. 7: The trends of browser components
and classes of exploited bugs. The data in-
clude bugs from all browsers. Lines are the
accumulated numbers. The JavaScript engine
and UAF bugs are dominating the exploited
bug components and classes, respectively.

Browser Vendor NVD’s CVSS-V3 Total (Diff)
L M H C L M H C

Firefox 13% 34% 35% 17% 1% 37% 39% 22% 947 (491)
Chromium 16% 39% 43% 2% 1% 46% 47% 6% 1191 (505)

TABLE III: A comparison between NVD-assigned CVSS-V3 scores
vs. vendors’ bug severity scores. Bug ratings are: Low, Moderate,
High, and Critical. Bugs that are too old2 to have CVSS-V3 scores
are omitted from the table. The last column is the total number of
bugs used for this comparison, and the number of bugs that have
different bug ratings assigned. The table emphasizes the divergence
of bug ratings in two dimensions: 1) CVSS scores vs. vendors’ scores
as seen in the number of bugs triaged as Low (emboldened), and 2)
bugs rated as Critical from vendor to vendor (underlined).

Firefox’s bugs with different severity scores, while it is only in
agreement with Chromium on 58% of Chromium’s bugs. While
full agreement between the two rating systems is not expected,
the big gap between the ratings is surprising. The divergence
between ratings also occurs between vendors. Looking at the
number of critical bugs in the two browsers, we can see
that Firefox assigns a much higher percentage of its bugs
as Critical compared to Chromium. Our analysis results align
with previous concerns regarding the use of CVSS scores as a
metric for bug triaging and prioritizing [132] [205] [156].
Bugs in browser exploits. Bugs used in real-world browser
exploits deserve more attention, as they are indications of
favorable attack vectors from the attackers’ point of view. To
study such bugs, we collect information from credible sources
that only acquire highly exploitable bugs. For bugs used in
the wild, we refer to Google’s routinely updated Project Zero
report, which tracks all publicly known cases of zero-day
exploits since 2014 [58]. We also collect the bugs exploited in
Pwn2Own [40], a real-world hacking competition sponsored
by the Zero Day Initiative [61]. We highlight the top exploited
bugs in the past decade in Figure 7, based on their bug class
and the host browser components.

As shown in Figure 7, for browser components, DOM bugs
were dominant until they were overtaken by JS engine bugs in

1CVE-2011-3046 [3], the largest bounty rewarded by Chromium ($60k), is
an outlier that was removed from the figure.

2NVD started to use the CVSS-V3 scoring system in 2015 which has
four levels of ratings, matching vendors’ rating levels, which justifies our
comparison.

2017. Nevertheless, DOM bugs remain relevant today and show
a slow but steady increase even after adding many mitigations.
For bug type, memory-safety bugs such as UAF bugs are still fa-
vorable over other bug classes in real-world exploits despite all
the mitigations in place. One interesting observation is the trend
of emerging bug classes and components. For most of the lines
in the figure, we see a rather steep increase in the early years,
but the increase slows down afterward (except for JavaScript
engine bugs). This trend visualizes the attacker’s endless effort
to find and explore new attack techniques, and the vendors’
reactive countermeasures to eliminate and mitigate new bugs.
Bug types included in this section. Based on the trend of
bugs presented in Figure 7, in this section, we mainly discuss
the trending types of bugs, namely: 1) Parser bugs (§III-B),
2) DOM bugs (§III-C), 3) JavaScript Engine bugs (§III-D), 4)
SOP bypass and UXSS bugs (§III-E).

B. Parser Bugs

Parsers often suffer from memory corruption bugs; there is
no exception for parsers in browsers. In web browsers, the
majority of parser bugs have been found in media parsers or
network protocol parsers. As shown in Figure 4a, Renderer
(Media) takes a large share. These bugs are easier to exploit
in the renderer process since they can be utilized to corrupt
JS objects and create more powerful exploit primitives.
Current status. After the hardening of heap allocators (§IV-B),
such exploits were made much more difficult or infeasible,
mainly because of the compartmentalization of JS objects on
the heap. Also, large-scale fuzzers like ClusterFuzz [111] have
discovered many parser bugs. Browser vendors are working
on sandboxing networking code and rewriting browser code
using memory-safe languages like Rust [57]. As a result, these
bugs have become scarce and harder to exploit. Still, there are
multiple dependencies of third-party libraries when it come to
parsing data, so tight control of security updates are needed.

C. DOM Bugs

DOM bugs were popular targets for attackers; according
to Figure 7, the majority of exploited bugs in 2014 were DOM
bugs. Since most of them were UAF bugs, mitigations have
been deployed to reduce the exploitability of them, such as
isolated heap and delayed free §IV-B.

7

Current status. While fuzzers continue to identify new
DOM bugs [111], [129], [227], as shown in Figure 7, recent
known in-the-wild full-chain exploits tend to use bugs in other
components due to the increased difficulty of exploiting DOM
bugs.

Lesson 3: UAF mitigations are effective towards reduc-
ing DOM bug exploits.
Since DOM bugs mostly rely on UAF problems, they
have been mostly mitigated by UAF mitigations. Generic
exploitation techniques relying on pointer type confusion
have become infeasible since heaps are isolated by object
types, and there are no publicly known alternative techniques.
As a result, exploiting DOM bugs is no longer a preferred
way to compromise renderers.

D. JS Engine Bugs

In recent browser exploits, JS engine bugs are one of the most
popular targets of browser exploits, especially optimization
bugs. At least 34% of exploited bugs (Figure 7) have utilized
JS engine bugs for compromising the renderer process, which
is usually the first step for full-chain browser exploits. JS
engine bugs can be utilized to easily generate powerful exploit
primitives like addrof (to leak the address of any JS object)
and fakeobj (to access an arbitrary address as an object).

As mentioned in §II-B, JIT compilers in JS engines use
speculative optimization. Bugs in these optimizations are far
more critical than conventional memory safety bugs such as
use-after-free or buffer-overflow, as they are hard to mitigate
but provide powerful exploitation primitives to attackers. On
a high level, JS engine bugs can be mainly divided into four
categories:

• JIT analysis bugs: Bugs in the analysis process or
models of the JIT compiler. Such bugs have the highest
exploitability and impact.

• JIT code mutation/generation bugs: Bugs in the process
of manipulating JIT graphs or emitting code. They often
result in an outright unexploitable crash.

• Non-JIT side-effect bugs: Side-effect bugs in JavaScript
built-in functions, which are mostly related to fast-paths.

• Non-JIT traditional memory corruption bugs: Other mem-
ory corruption bugs that don’t fall into the categories
above.

We examined the 45 exploited bugs in Figure 7; there
are 13 JIT analysis bugs, 9 non-JIT side-effect bugs and
11 traditional memory corruption bugs, but there are no
JIT code mutation/generation bugs. We suspect that this is
because generation bugs are hard to exploit. Most of the bugs
in the JIT compiler are logic bugs. Since it is a compiler
infrastructure, logic errors can be amplified to memory safety
errors in JIT-compiled code. Therefore, it is hard to make
a general mitigation for JIT bugs. Here, we introduce three
major categories of defenses: primitive elimination, overwrite
protection and jit-based code-reuse mitigations.

Primitive elimination. Primitive elimination techniques aim
to prevent attackers from 1) converting vulnerabilities to exploit
primitives and 2) escalating exploit primitives to stronger ones3.

a) Object shape authentication. This type of mitigation aims
to prevent attackers from crafting a valid object using the
fakeobj primitive. For example, in JavaScriptCore, StructureID
Randomization encodes the StructureID with seven random
entropy bits, which makes it hard for the attacker to guess [121],
[204]. Since StructureID indicates the type and shape of the JS
object, incorrectly guessing the StructureID will lead to invalid
shape, and accessing it will ultimately crash the process [221].

b) Address space isolation. This category of mitigations
provides isolation of different objects to prevent objects from
being faked or overwritten. GigaCage [83] is a 4GB virtual
memory region that separates different objects into different
heaps (or HeapKinds). The key idea is to prevent memory
access across different heaps and use the relative offset from
the heap base address to locate a GigaCaged object, instead
of using absolute addresses. As such, even if a pointer is
corrupted it cannot point to anything outside its original heap.
PACCage [121] is applied to protect the backing store buffer
pointers of TypedArray with Pointer Authentication Codes
(PAC) on top of GigaCage to enhance the security even further.
Chrome V8 Heap Sandbox [119], which is experimental, has
goals similar to GigaCage, but it tries to protect external
pointers using a separate pointer table, so that attackers cannot
create arbitrary values for external pointers.

Overwrite protection. Overwrite protections are standard
protection mechanisms to prevent attackers from introducing
arbitrary executable code, which can be seen as the last
line of defense in the context of browser exploits. They
mainly include four mechanisms: W ⊕ X [106], hardened
JIT mapping [139], fast permission switch [128], [139], and
out-of-process JIT [164].

a) W ⊕ X. W ⊕ X [106] is an important security principle
that enforces memory to be either executable but not writable
or writable but not executable. This mitigation made traditional
shellcode injection attacks completely obsolete and provided
the foundation for many other protection techniques [62], [232].
Surprisingly, JIT code pages are often exempt from this basic
mitigation and mapped as rwx for performance reasons [106].

b) Execute only memory. iOS 10 on ARMv8 devices landed
hardware support for execute-only memory (XOM) [139],
enabling JIT-compiled code to contain secret data as an
immediate value. Safari utilizes XOM to hide the address of the
writable-executable mapping from attackers, by introducing an
execute-only jit_memcpy function that has the base address of
JIT mapping inside. This makes arbitrary read/write insufficient
for the JIT code page overwrite, and forces attackers to take an
alternative path e.g., hijacking control-flow to call jit_memcpy.

3For example, to construct reliable and stable read/write primitives, an at-
tacker can leverage the addrof and fakeobj primitives to fake an ArrayBuffer
object with a fully controlled backing store pointer, which is an escalation of
primitives.

8

c) Fast permission switch: APRR & MPK. Hardware support
for fast permission switching was introduced to reduce the
overhead of switching page permissions using mprotect().
Since iOS 11 on ARMv8 devices, APRR [139] was deployed
to enable per-thread permissions by mapping page permissions
(r,w,x) to eight dedicated registers that indicate the actual
page permission of the thread. Similarly, Intel MPK [128] adds
a separate 4-bit integer per page, to enforce two additional
protections: disable access and disable write. Consequently, the
JIT region will always be r-x, and only the write operations
from a dedicated data-copying thread are allowed by invoking
an unlock function, which changes the permission to rw- only
for the target thread.
d) Out-of-Process JIT. On Windows, mitigations like Arbitrary
Code Guard (ACG) ensure that a process can only map signed
code into its memory. However, browsers heavily use JIT
compilers for performance purposes, which generate unsigned
native code in a content process. Out-of-process JIT [164] was
introduced to enable ACG with JIT compilers. Consequently,
the JIT functionality was moved to a separate process that runs
in its own sandbox, and it is responsible for compiling JS code
and mapping it into the process. As such, the content process
is never allowed to map or modify its own JIT code pages.
JIT-based code-reuse mitigations. JIT spray [158] is a
technique that injects a vast amount of attacker-controlled
JIT code (marked as executable) into a predictable address in
the memory to bypass ASLR/DEP, similar to Heap spray [95].
To mitigate JIT spray, browsers put a size limit on JIT code and
switched to 64-bit platforms with high-entropy ASLR, which
made JIT-spray infeasible. Still, it is possible to utilize the JIT
code gadgets if their addresses are known to the attacker. Such
attacks are called JIT-based code reuse attacks (JCRAs). Here,
we briefly summarize mitigations for such attacks.
a) Controlled bytes elimination. JCRAs have a fundamental
assumption that with control of immediate operands and specific
opcodes, an attacker can control the generated JITed code
in heap memory. Therefore, mitigations were proposed to
eliminate the predictability of attacker-controlled bytes, such as
obfuscating large constants [71], [144], permuting the register
allocation of immediate operands and local variables [144],
[222] and jumbling the instructions in a function’s call
frame [144], [222].
b) Internal randomization. Attackers can also leverage the
relative location of instructions with each other or predictable
offsets from the base address. Some of the mitigations aim
to diversify the JIT code layout, including: randomizing the
relative offsets between different pairs of instructions [126],
[144], [225], and inserting free space randomly before the first
unit of code [106], [144].
Current status. While there are some trials to prevent certain
types of errors (§IV-D), it’s hard to cover all of them. As a
result, mitigations in JS engines focus on eliminating attack
primitives. Recently, the Edge team added a new security
feature called Super Duper Secure Mode (SDSM) [17], [19],
which basically disables JIT compilation. Users can choose to

disable JIT on websites that are less frequently visited. While
sacrificing some performance, it is a good approach for reducing
attack surfaces. For JCRAs, although multiple mitigations have
been introduced, they are still viable [87], [106] since vendors
did not put many resources into implementing or maintaining
mitigations.

Lesson 4: Mitigating JS engine bugs is difficult.
JavaScript engine bugs, especially JIT compiler bugs, are
very powerful since the attacker can emit code with memory
corruption issues. Many mitigations aim to prevent escalation
of exploit primitives because it is hard to mitigate logic bugs
in general. Therefore, vendors often deploy mitigations that
aim to break exploit paths, and enhance them continuously
to prevent future attacks.

E. SOP-Bypass and UXSS Bugs
Same origin policy (SOP) [94] is enforced by web browsers

to keep a security boundary between different origins. SOP-
bypass bugs can be used to compromise SOP to varying degrees,
from leaking one bit to stealing full-page data. UXSS bugs are
the most powerful type of SOP-bypass bug that can be used
to facilitate cross-origin JavaScript code execution. In UXSS
attacks, the attacker can inject scripts to any affected context
by exploiting bugs in web browsers [13], [14] or third-party
extensions [31], [35], achieving the same effect as exploiting
the XSS vulnerability in the target website.
Current status. Site Isolation [39], [186] is one of the most
significant mitigations against UXSS attacks. Site Isolation
enforces SOP at the process level, which made most existing
UXSS bugs unexploitable. The number of reported UXSS bugs
was significantly reduced after site isolation was gradually
applied after 2017, as shown in Figure 6. However, UXSS
vulnerabilities in third-party extensions still exist; multiple
UXSS bugs have been found in popular extensions [31], [35],
which have enabled attackers to bypass site isolation and steal
the user’s credentials.
Lesson 5: UXSS bugs are mostly mitigated by Site
Isolation.
Site isolation is an effective mitigation against UXSS bugs.
However, only Chrome and Firefox have site isolation
deployed, since it requires a considerable amount of en-
gineering effort (Appendix D).

F. Summary
Due to threat research and improved patch deployments, the

impacts of 1-day exploits are reduced, and in-the-wild 0-day
exploits get patched quickly once they are caught. However,
offensive research is still much ahead of the vendors. Although
vendors are trying, they are consistently behind in this arms
race. Mitigations from vendors are mostly reactive, which
means they are developed long after each wave of attacks.
By the time an attack surface is finally closed, attackers have
already come up with a better exploit. It’s a difficult task, but
vendors should be more proactive and implement new features
with security implications in mind, e.g., studying potential new
attacks before deploying new features.

9

IV. MORE SECURITY MITIGATIONS IN BROWSERS

In this section, we present more generic mitigations imple-
mented by browser vendors that are not covered in previous
sections. We present a longitudinal study on the mitigations
implemented in the four major browsers in the past decade,
as well as the dates when they were applied and retired, in
Table IV. In this section, we discuss a few of them in detail.

A. Sandbox

The sandbox is crucial to browser security because it confines
the effect of bugs in the renderer process, which contains
various error-prone components. Except for cases like UXSS,
attackers need to escape from the renderer sandbox using
an exploit for the kernel, system services, or the browser
process. Consequently, it significantly raises the bar for attacks
because attackers need to exploit both components (renderer
and sandbox) to have a full-chain 0-day exploit.
Win32k lockdown. Since most Windows kernel vulnerabilities
have been in Win32k system calls, Microsoft introduced the
System Call Disable Policy aka. Win32k lockdown [130] for
Windows in 2012. This allows the developer of a Windows
application to completely block access to the Win32k system
call table, significantly reducing the attack surface. Edge,
Chrome, and Firefox have already adopted this mechanism to
protect the browsers. As a result, achieving sandbox escape
from the renderer process has become much more complex.
Hypervisor based sandboxing. Windows Defender Applica-
tion Guard (WDAG) [161] was introduced by Microsoft to
isolate untrusted websites or resources (e.g., files) in enterprise
scenarios. WDAG uses Hyper-V to create a fresh instance of
Windows at the hardware layer, which includes a separate copy
of the kernel and the minimum Windows Platform Services to
make sure that the Edge browser functions normally. WDAG is
implemented in Edge to protect against advanced attacks that
can bypass the browser sandbox. With WDAG, the attacker
needs to escape both the sandbox and the Hyper-V virtual
machine.

B. Hardened Allocators

Browsers use specialized heap allocators for many objects for
performance and security reasons [96], [150]. These allocators
use specific designs which help reduce damage by limiting
attack primitives.
Isolated heap. Isolated heap is an effective defense to prevent
use-after-free (UAF) attacks being escalated to type confusion
attacks. By isolating objects based on their 1) type, 2) security
hazard level (e.g., embedding v-table pointer), and 3) JavaScript
reachability (e.g., ArrayBuffer), isolated heap effectively raises
the bar for UAF exploitation. The isolation prevents an attacker
from re-claiming the freed object with an object with a different
layout, which is typical for exploiting UAFs in browsers.

Modern browsers implement a basic level of heap separation
between JavaScript-reachable objects and other objects [83],
[85], [100], [123]. However, it was still possible to create
type confusion via UAF among the objects in the same heap

but in other types. To prevent this attack, Safari [73] and
Firefox [98] introduced separate heaps for every type in specific
categories, which provided a much more fine-grained isolation.
Therefore, there is no public, generic exploitation methodology
for exploiting UAF bugs in all browsers.

Delayed free. Another mitigation, elayed free, effectively
increases the difficulty of exploiting UAF bugs, but this
approach cannot restrict the reclamation of dangling pointers.
Browsers use various garbage collection (GC) algorithms to
deallocate heap-allocated objects with no references. Some
variants of GC additionally scan stack and heap [96], [150]
areas to find possibly overlooked references, which is known
as conservative scanning [80] or delayed free [123]. Notably,
Firefox dropped this in favor of exact rooting and wrote a
static analysis tool to find unsafe usage of references from the
stack [99], [167]. Chrome also has a similar tool [15], but it
is only enforced on specific areas. However, delayed free has
introduced side-channel primitives that can be used to defeat
ASLR since it cannot distinguish pointers to the heap and
user-controlled integers by design [41], [81], [104], [123].

Heap metadata protection. Heap metadata protection is an
approach that checks the metadata portion of heap chunks
to prevent heap corruption and silent error propagation in
the heap. For example, a heap allocator may put a random
value [151] before dangerous data structures to detect heap
exploits. PartitionAlloc in Chrome removed in-line metadata
and placed guard pages to prevent linear heap overflow from
overwriting metadata [85]. There are also some OS-level efforts
on metadata protection [148], [151].

Other mitigations on heap. Frame poisoning in Firefox
deallocated chunks of memory with addresses pointing to
non-accessible memory pages [98]. Similarly, in Edge, this is
done by filling zeros when freeing heap chunks [228]. GWP-
ASan [115] in Chrome randomly places a small portion of
allocated objects right before/after guard pages and deallocates
the entire page when the chunk is freed to detect heap errors
in the wild.

C. Control-Flow Integrity

Since attackers often manipulate the values of instruction
pointers to achieve code execution, control-flow integrity is
enforced to prevent them from hijacking control flows, making
the attack more difficult. The compiler infrastructure, OS and
hardware support provide most mitigations in this category,
such as protecting virtual function tables by introducing canary
values [165] and allowing listing indirect branches by checking
the destination address [159], [177].

There is ongoing work to prevent arbitrary memory writes
from modifying code regions that are executable by attackers
(§III-D). Based on hardware support, browsers could apply
additional mitigations without a dramatic decrease of perfor-
mance, such as adding pointer integrity checks using PAC on
ARM64 [149] and adding additional W ⊕ X protection on
JIT-compiled code using Intel MPK [118] and APRR [198].

10

★: Mitigation applied, ✗: Mitigation retired
C: Chrome, F: Firefox, S: Safari, I/E: IE / Edge

Attack ↓Bypass OS mitigations [1], [2] ↓Bypass CFG [229]↓JS [26] ↓Glitch [105]
↓Bypass SELinux [20] ↓Sandbox escape [4] ↓JS core [5] ↓S/M [137]↓Code sign [120]

Mitigation Browser 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
C F S I/E 1 2 34 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

JIT
StructureID randomization [204] ✓ ★
GigaCage [83] ✓ ★
PACCage [121] ✓ ★

W⊕X

W⊕X protection [21] ✓✓✓ ✓ ★ ★ ★ ★
Hardened runtime [68] ✓✓✓ ★ ★ ★
Out-of-process JIT [164] ✓ ★
Code signing enforcement [25], [102], [164] ✓✓ ✓ ★ ★ ★
Arbitrary code guard [32], [101], [164] ✓✓ ✓ ★ ★ ★

Heap Isolated heap [83], [85], [100], [228] ✓✓✓ ✓ ★ ★ ★ ★
Delayed free [96], [99], [228] ✓✓✓ ✓ ★ ✗ ★ ★ ★

S/M
Branchless security checks [97] ✓ ✓ ✓ ★★★ ✗ ✗
Disabling SharedArrayBuffer [97] ✓✓✓ ✓ ★ ★★★ ✗ ✗
Reducing timer accuracy [86], [171], [209] ✓✓✓ ✓ ★★★★

CFI VTGuard [228] ✓ ★
Control flow integrity [159], [177] ✓✓ ✓ ★ ★ ★

SBX

Seccomp (+bpf) sandbox [146] ✓✓ ★ ★
Namespace (setuid, userns) [74] ✓✓ ★ ★
SELinux [200] ✓ ★ ✗
macOS sandbox [140] ✓✓✓ ★ ★★
Restricted tokens [18] ✓✓ ✓ ★★ ★
AppContainer [228] ✓ ★
Non-system font filtering [23] ✓ ★
Win32k lockdown [130] ✓ ★
Plugin sandboxing (e.g., Flash) [188] ✓✓✓ ✓ ★ ★ ★ ★

Other

XSS auditor [72] ✓ ✓ ✓ ★★★ ✗
64-bit ASLR ✓✓✓ ✓ ★ ★ ★ ★
Hypervisor based sandboxing [160], [162] ✓ ★
Site isolation [186] ✓ ★
Pointer authentication code [149] ✓ ✓ ★ ★

TABLE IV: Mitigations in browsers.

D. Side Channels

Browsers are also vulnerable to side-channel attacks. To date,
studies have shown that sensitive information in browsers can
be inferred via 1) microarchitectual state [137], [147], [157],
[179], [197]; 2) GPU [142], [178]; 3) floating-point timing
channels [64] and 4) browser-specific side channels [201],
[216]–[218]. Researchers have introduced defense mechanisms
[84], [138], [194], [202] to protect the browsers from side-
channel attacks, such as DeterFox [84] and FuzzyFox [138].
Also, browser vendors have implemented defenses [97], [114],
[127], which can be classified into two categories as follows:
Reduce the resolution of timers. Since most of the attacks
rely on accurate timing, to hinder the detection of small
timing differences, browser vendors reduced the resolution
of the precise timer (e.g., performance.now()) and introduced
random jitters to prevent resolution recovery [22], [66], [168].
After the discovery of Spectre [137] and Meltdown [147], the
vendors further lowered the precisions of timers [86], [171],
[209]. Since SharedArrayBuffer can be used to create a high-
resolution timer, shortly after the discovery of Spectre [137],
SharedArrayBuffer was disabled in all modern browsers [88].
Prevent resource sharing. Another mitigation technique
is to prevent resource sharing between the victim and the
attacker. Site Isolation [39], [186] (§II-B) effectively miti-
gates the Javascript-based transient execution. Cross-Origin-
Opener-Policy (COOP) and Cross-Origin-Embedder-Policy
(COEP) [131] were introduced to set up a cross-origin isolated

environment. COOP allows a website to include a response
header on a top-level document, ensuring that the cross-origin
documents do not share the same browsing context group with
itself, thus preventing direct DOM access. COEP prevents a
page from loading any cross-origin resources that do not give
explicit permission to this page. These are both enforced using
HTTP headers, and they were shipped in Chrome 83, Firefox
79, and Edge 83 [92], [93], while Safari does not support them
yet as of November 2021.

After the introduction of Site Isolation and COOP/-
COEP, Chrome and Firefox re-enabled the use of
SharedArrayBuffer [27], [172]. However, a study showed
that the re-introduction of SharedArrayBuffer increases the
covert channel capacity 2,000-fold and 800,000-fold, respec-
tively [187]. Two recent papers [63], [135] suggested that
despite Site Isolation in Chrome, the attacker can still learn
cross-origin sensitive information.

E. Other Mitigation Efforts

UAF mitigation. To fundamentally fix the UAF problems that
are not covered by garbage collection or other safety measures,
the Chrome team introduced a term called MiraclePtr [184],
[185], which stands for a set of algorithms that can wrap raw
pointers in C/C++ so that they are not exploitable via UAF.
MiraclePtr is expected to be in production soon [79].
Improving memory safety. The Chrome team has explored
improvements for their C++ codebase that can eliminate/reduce

11

specific types of bugs by limiting the use of specific language
features (e.g., C++ exceptions [112]) and introducing wrapper
classes around integer operations [212].
Improving JIT compiler. There have been efforts to safeguard
dangerous optimizations inside JIT compilers. For example,
many exploits make use of bounds check elimination [192] that
removes seemingly redundant bounds checks. To mitigate this,
the Chrome team introduced a patch that marked such checks
as aborting instead of simply removing them [133]. Therefore,
the attacker can only trigger a SIGTRAP at best. Moreover,
to make bytecode generation for standard JS functions less
error-prone, the Chrome team made a domain-specific language,
Torque [113], which replaced the existing C++ implementations
and reduced a lot of LoC.
Lesson 6: Collaborative efforts on mitigations are good.
When one vendor deploys a mitigation, other vendors are
likely to follow. In Table IV, we saw that most of the
mitigations have been adopted by multiple browsers. If there
are bugs found in one browser, the vendor can quickly
share the information with other vendors and they can
work together to build better mitigations using collective
knowledge. In the case of Spectre/Meltdown attacks [137],
[147], browser vendors worked together to build a plan for
mitigating the immediate threats [86], [171], [209], which
is a great example of collaborative effort.

V. CASE STUDY: FULL-CHAIN EXPLOITS

Because modern browsers are heavily compartmentalized
with different security capabilities, browser exploitation often
requires chaining multiple attacks to ultimately execute mali-
cious action. Combining all such steps is usually referred to
as full-chain exploitation. As a representative case study for
full-chain browser exploitation, we analyze a winning attack
against Safari [134] in 2020 Pwn2Own competition, i.e., the
exploit example shown in Figure 2.

This attack infiltrates the renderer process, starting from a
JIT compiler optimization error [37]: The DFG compiler in
Safari JavaScript renderer incorrectly models a side effect of
in operator when a special condition regarding proxy object is
met. This bug allows the players to construct the standard
addrof/fakeobj primitives, which yields arbitrary memory
read/write and ultimately, arbitrary code execution. To construct
a valid object using fakeobj, the players utilize a publicly
known technique [221] to bypass object shape authentication
(StructureID randomization in §III-D). After faking a JavaScript
object, they use a known technique [183] to bypass Address
Space Isolation (Gigacage in §III-D) and get an arbitrary
read/write primitive in the renderer process.

Once the renderer process is compromised, sandbox escaping
is the next step and is more challenging. In this attack, the
players cleverly stitch multiple logic/memory errors together
to escape the sandbox. The players first additionally obtain
arbitrary code execution from the CVMServer XPC service (part
of the built-in OpenGL framework), which, though sandboxed,
has the capability to create symbolic link, while the renderer
process does not have such capability. Also, there is an IPC

method in Safari, didFailProvisionalLoad(), that can launch
an arbitrary app if a symbolic link pointing to the app folder is
provided. By combining them, the players can launch arbitrary
apps via Safari. At this point, the sandbox is successfully
breached, as they can execute arbitrary applications outside
the renderer sandbox, similar to a user who launches Safari.

The Pwn2Own example we summarized is specific but
impactful. Based on this, we describe the full-chain browser
exploitation in a more generic way. First, to find vulnerabilities
in the renderer, one can leverage fuzzing techniques [122],
[125], [182] or manually audit the browser source code.
Discovering an exploitable bug would be one of the most
challenging steps. After such a bug is found, the next step
is to achieve an arbitrary code execution primitive within the
renderer process context. However, taking control over the
renderer is only a beginning, since renderers are confined by the
sandbox mechanism. To break out of the sandbox, the attacker
typically targets flaws in the browser process, the OS kernel, or
IPC protocols. Unlike attacking the renderer, sandbox escape
usually requires chaining high-level logical exploits against
multiple system components. Once the sandbox is escaped,
the attacker can execute an arbitrary program with an equal
security level as the browser, and full-chain exploit is achieved.

VI. DISCUSSION

In this section, we discuss several aspects related to browser
security. There are more discussions in the Appendix.

A. Patch-gapping Problems

Due to the existence of public repositories and issue trackers,
patches in open source browsers can be published before a
new release is done and made available to end-users, enabling
attackers to assess the exploitability of patches. For example,
iOS Safari was exploited due to the 1.5-month patch gap [193].
To shrink the gap, Chrome introduced bi-weekly security
updates and reduced the release cycles from six weeks to
four weeks [78]. Firefox holds back pushing security fixes to
the repository before releases [173], [193] and recommends
not including vulnerability information in patch commits [173].

B. Homogeneity of Browser Engines

Many secondary browsers use the same browser engine as the
leading browsers (e.g., Chrome V8). As a result, a vulnerability
in one browser engine can affect other browsers that share it.
Among the 15 most popular browsers [206], 11 of them are
based on Chrome’s engine (including Microsoft Edge [136]), as
shown in Table V. When a new version of Chrome is released
with bug fixes, it is not applied immediately to secondary
browsers since there is a time gap before secondary browsers
integrate them.

According to the release history of secondary browsers there
are time gaps before applying released security patches, which
provides an attack window for the attacker. For example, one
WebKit bug was exploitable on PlayStation firmware several
months after being reported to the WebKit bug tracker [29].
This was also an issue in Android, where apps are shipped with

12

Engine Browser UI Engine Server App

Chrome Chrome, Edge, Opera, UC, An-
droid, 360Safe, QQ, Yandex,
Whale, Puffin, KaiOS

Electron,
Android WebView,
Qt WebEngine

Node.js,
CouchDB

Safari‡ Chrome, Safari, Edge, Opera,
UC, QQ, Whale, Puffin

iOS WebView,
Qt WebKit

Firefox Firefox MongoDB

IE/Edge Edge Legacy, IE†, QQ†, Whale† MSHTML

Total 24 6 3

TABLE V: Homogeneity of browser engines. Some browsers ship
multiple engines to ensure compatibility of web pages (†) or due to
specific platform requirements, such as WebKit on iOS(‡) [69].

bundled rendering engines e.g., a UXSS bug was reported on
Samsung Internet [6] around one month after being reported to
Chromium [7]. Apple solved this problem in iOS by enforcing
all apps to use WebKit libraries provided by the OS and
rejecting non-compliant apps in their App Store [69].

Moreover, the use of web browser components such as
renderers and JavaScript engines further extends to applications
using frameworks such as Electron and Android WebView.
Also, Node.js [56] and Deno [47] utilize Google’s V8 engine
to enable JavaScript outside the context of browsers (e.g., for
implementing web servers). As a result, bugs and exploitations
of browser engines have a broader impact beyond just browsers
themselves, expanding the need for better defense mechanisms
to avoid catastrophic consequences.

Lesson 7: The homogeneity of browser engines creates a
serious problem; better patching approaches are needed.
Due to the homogeneity of browser engines, browser bugs
in one browser engine can affect many other browsers and
applications. We suggest leading browsers such as Chrome
provide their JavaScript engine as a shared library for other
apps to use, so that it is easier to deploy patches via over-
the-air updates, instead of manually integrating patches.

C. Bug-finding Tools

Multiple efforts have been made to develop state-of-the-art
tools for finding browser engine bugs, which can be mainly
divided into two categories: fuzzing and static analysis.
Fuzzing. Fuzzing is one of the most effective strategies for
finding bugs and has been applied to uncover browser bugs
since 2012. We summarize the papers about browser fuzzers
in the past decade in Table VI (Appendix), which includes the
bug statistics they have found in Chrome, Firefox, Safari, and
Edge (based on both ChakraCore and V8), along with their key
techniques. These fuzzers choose between two classic modes:
mutational fuzzing (e.g., Montage [143]) and generational
fuzzing (e.g., CodeAlchemist [122]). Some fuzzers like Lang-
Fuzz [125] and DIE [182] leverage a mix of both modes coupled
with coverage feedback. Constructing syntactic and semantic
aware inputs like DIE [182] and LangFuzz [125] is useful for
generating more crashes. Some industrial efforts on fuzzing
browsers are highly effective on finding complex browser bugs.
For example, ClusterFuzz [111] runs on over 25,000 cores [109]
and found over 29,000 bugs [110] in Chrome.

Static analysis. Recently, there has been another line of
work in the fuzzing-dominated field of browser bug finding.
SYS [82], a first-of-its-kind static/symbolic tool for finding
bugs in browser code, showed that static analysis could be
scaled for the huge codebases of browsers by breaking them
into small pieces. Specifically, SYS uses static checkers to find
potential error sites and then uses their extensible symbolic
execution to analyze those error sites. Therefore, SYS has
highlighted an excellent direction for future works in the field
of browser bug finding by static analysis.

Lesson 8: Automated bug-finding tools are great, but
they still need improvement.
State-of-the-art fuzzers from industry are doing a good job
of capturing bugs in browsers. However, despite their good
performance, such tools still cannot replace manual audits,
which remain the dominant approach for finding complex
logic bugs. Thus, more advanced bug-finding techniques are
needed from academia as well as industry.

D. Proactive Mitigations

Most existing mitigations are reactive, meaning they are
implemented after an exploit has been found, which is not
good enough. It would be ideal if a mitigation could be in
place before the attack happens (proactive approach), which
can defeat unknown threats. For example, Site Isolation [186]
was originally designed to mitigate UXSS attacks using out-of-
process iframes, but it also helped defeat the Spectre/Meltdown
attacks, which were found by the researchers long after the Site
Isolation project started. This is a good example of a proactive
approach against unknown threats.

In the game of exploit mitigations, defenders can never beat
attackers because the actions of the defenders are transparent
to attackers. Vendors can change this situation by secretly
deploying new mitigations, for example, in their sandboxes in a
safe browsing infrastructure. This can also help to detect in-the-
wild exploits and kill bugs by collecting samples that are highly
likely to be malicious. Also, vendors can try more aggressive
mitigations that are likely to affect user experiences in such
an environment. For example, if StructureID randomization
(§III-D) was deployed in a safe browsing sandbox before
public announcement, most JIT exploits involving the fakeobj
primitive would have been detected.

VII. CONCLUSION

In this paper, we present the first SoK of browser security.
We first provide a unified model to study the security design of
four major browsers, and present a 10-year longitudinal study of
browser bugs to study the trends. Then we introduce prominent
bug types, and present state-of-the-art mitigations. We also
study a real-world full-chain exploit from Pwn2Own 2020 in
detail. This paper sheds light on the area of browser security,
and presents key takeaways that can enlighten researchers
and browser vendors on future directions to improve browser
security.

13

REFERENCES

[1] CVE-2003-1048. Double free vulnerability in mshtml.dll.
[2] CVE-2006-5579. Access of previously freed memory in Internet

Explorer 6.
[3] CVE-2011-3046. Universal XSS in Chromium with largest reward

amount ($60k).
[4] CVE-2013-6632. Memory corruption leads to sandbox escape in Chrome

browser.
[5] CVE-2016-4622. Remote code execution on WebKit.
[6] CVE-2017-17859. SOP Bypass on Samsung Internet referred as CVE-

2017-5124 in Chromium Engine.
[7] CVE-2017-5124. SOP Bypass on Google Chrome.
[8] CVE-2019-5647. Insufficient Session Expiration in Chrome Plugin.
[9] CVE-2019-6481. Second-Factor Auth Bypass in Chrome Plugin.

[10] CVE-2020-15655. Bypass same-origin policy in Firefox extension.
[11] CVE-2020-6554. Use After Free in Chrome extension.
[12] CVE-2020-6809. Arbitrary read on local files in Firefox extension.
[13] CVE-2021-1879. UXSS in Webkit iOS 14.4.2 and iPadOS 14.4.2.
[14] CVE-2021-34506. Microsoft Edge (Chromium-based) Security Feature

Bypass Vulnerability.
[15] gcmole. https://github.com/v8/v8/tree/master/tools/gcmole.
[16] Languages - Chromium (Google Chrome). https://www.openhub.net/p/

chrome/analyses/latest/languages_summary.
[17] Microsoft unveils ‘Super Duper Secure Mode’ in latest version of

Edge. https://portswigger.net/daily-swig/microsoft-unveils-super-duper-
secure-mode-in-latest-version-of-edge.

[18] Restricted Tokens - Win32 apps. https://docs.microsoft.com/en-us/
windows/win32/secauthz/restricted-tokens.

[19] Super Duper Secure Mode. https://microsoftedge.github.io/edgevr/posts/
Super-Duper-Secure-Mode/.

[20] SELinux leaked file descriptor, 2010. https://bugzilla.redhat.com/show_
bug.cgi?id=581256.

[21] Add an option to mark JIT pages as non-writable. https://bugzilla.
mozilla.org/show_bug.cgi?id=977805, 2014.

[22] Reduce resolution of performance.now to prevent timing attacks. https:
//bugs.chromium.org/p/chromium/issues/detail?id=506723, 2015.

[23] Add New Process Mitigation Policies for Win10+. https://bugs.
chromium.org/p/chromium/issues/detail?id=504006, 2016.

[24] Security: Block GPU Process Opening Renderer Processes. https:
//bugs.chromium.org/p/chromium/issues/detail?id=596862, 2016.

[25] Enable new FORCE_MS_SIGNED mitigation, 2017. https://bugs.
chromium.org/p/chromium/issues/detail?id=750886.

[26] Off-by-one causes JIT optimization error, 2017. https://bugs.chromium.
org/p/chromium/issues/detail?id=762874.

[27] Re-enable sharedarraybuffer + atomics. https://bugs.chromium.org/p/
chromium/issues/detail?id=821270, 2018.

[28] Sandbox the network service on Windows, 2018. https://bugs.chromium.
org/p/chromium/issues/detail?id=841001.

[29] setAttributeNodeNS UAF Write-up. https://github.com/Cryptogenic/
Exploit-Writeups/blob/master/WebKit/setAttributeNodeNS%20UAF%
20Write-up.md, 2018.

[30] ChakraCore, The core part of the Chakra JavaScript engine that powers
Microsoft Edge, 2019. https://github.com/microsoft/ChakraCore.

[31] Comply with new security requirements for Chrome, 2019. https:
//github.com/uBlockOrigin/uBlock-issues/issues/710.

[32] Enable ACG for jitless v8 in pdfium, 2019. https://bugs.chromium.org/
p/chromium/issues/detail?id=961831.

[33] JavaScriptCore, The built-in JavaScript engine for WebKit, 2019. https:
//trac.webkit.org/wiki/JavaScriptCore.

[34] SpiderMonkey, JavaScript engine for Mozilla products, including Fire-
fox, 2019. https://developer.mozilla.org/en-US/docs/Mozilla/Projects/
SpiderMonkey.

[35] UXSS bug found in Lastpass, 2019. https://blog.lastpass.com/2019/09/
lastpass-bug-reported-resolved/.

[36] V8, Open source JavaScript and WebAssembly engine for Chrome and
Node.js, 2019. https://v8.dev/.

[37] 2020. Incorrect JIT modeling in WebKit that leads to type confusion.
[38] Add support for random restricted SID. https://chromium-review.

googlesource.com/c/chromium/src/+/2085751, 2020.
[39] The Chromium Projects. Site Isolation, 2020. https://www.chromium.

org/Home/chromium-security/site-isolation.

[40] Zero Day Initiative - Pwn2Own Returns to Vancouver for
2020. https://www.zerodayinitiative.com/blog/2020/1/8/pwn2own-
returns-to-vancouver-for-2020, 2020.

[41] Bypassing ASLR using Oilpan’s conservative garbage collector. https:
//bugs.chromium.org/p/chromium/issues/detail?id=1144662, 2021.

[42] Can I use... Support tables for HTML5, CSS3, etc. https://caniuse.com/,
2021.

[43] Chromium Bug Tracker, 2021. https://bugs.chromium.org/p/chromium/
issues/list.

[44] Chromium Security - The Chromium Projects, 2021. https://www.
chromium.org/Home/chromium-security.

[45] Chromium source code, 2021. https://chromium.googlesource.com/
chromium/src.

[46] Common Vulnerability Scoring System SIG, 2021. https://www.first.
org/cvss/.

[47] Deno - A modern runtime for JavaScript and TypeScript, 2021. https:
//deno.land/.

[48] Firefox Bugzilla, 2021. https://bugzilla.mozilla.org/home.
[49] Google’s Project Zero bug tracker, 2021. https://bugs.chromium.org/p/

project-zero/issues/list?q=&can=1.
[50] Memory Safety in Chromium, 2021. https://www.chromium.org/Home/

chromium-security/memory-safety.
[51] Modern security protection for vulnerable legacy apps, 2021.

https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-
iemode-safer-than-ie.

[52] Mozilla Firefox source code, 2021. https://hg.mozilla.org/.
[53] Mozilla Foundation Security Advisories, 2021. https://www.mozilla.

org/en-US/security/advisories/.
[54] Mozilla Security Blog, 2021. https://blog.mozilla.org/security/.
[55] National Vulnerability Database, 2021. https://nvd.nist.gov/.
[56] Node.js, 2021. https://nodejs.org/en/.
[57] Oxidation, 2021. https://wiki.mozilla.org/Oxidation.
[58] Project Zero: 0day "In the Wild", 2021. https://googleprojectzero.

blogspot.com/p/0day.html.
[59] Smart Pointer Guidelines in Firefox, 2021. https://firefox-source-docs.

mozilla.org/dom/workersAndStorage/CodeStyle.html#plain-pointers.
[60] V8 source code, 2021. https://chromium.googlesource.com/v8/v8.
[61] Zero Day Initiative - Published advisories, 2021. https://www.

zerodayinitiative.com/advisories/published/.
[62] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-

flow integrity principles, implementations, and applications. TISSEC
09.

[63] Ayush Agarwal, Sioli O’Connell, Jason Kim, Shaked Yehezkel, Daniel
Genkin, Eyal Ronen, and Yuval Yarom. Spook.js: Attacking chrome
strict site isolation via speculative execution. In SP22.

[64] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala,
Sorin Lerner, and Hovav Shacham. On subnormal floating point and
abnormal timing. In SP15.

[65] Apple. Changeset 160983 in webkit. https://trac.webkit.org/changeset/
160983/webkit, 2013.

[66] Apple. Changeset 186208 in webkit for trunk/source/webcore/page/per-
formance.cpp. http://trac.webkit.org/changeset/186208/webkit/trunk/
Source/WebCore/page/Performance.cpp, 2015.

[67] Apple. Changeset 253098 in webkit. https://trac.webkit.org/changeset/
253098/webkit, 2015.

[68] Apple. Allow Execution of JIT-compiled Code Entitlement,
2018. https://developer.apple.com/documentation/bundleresources/
entitlements/com_apple_security_cs_allow-jit.

[69] Apple. App Store Review Guidelines. https://developer.apple.com/app-
store/review/guidelines/, 2020.

[70] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick
Jauernig, Ahmad-Reza Sadeghi, and Daniel Teuchert. Nautilus: Fishing
for deep bugs with grammars. In NDSS19.

[71] Michalis Athanasakis, Elias Athanasopoulos, Michalis Polychronakis,
Georgios Portokalidis, and Sotiris Ioannidis. The devil is in the constants:
Bypassing defenses in browser jit engines. In NDSS15.

[72] Daniel Bates, Adam Barth, and Collin Jackson. Regular expressions
considered harmful in client-side xss filters. In WWW10.

[73] Niklas Baumstark. Compressing Type Information in Modern C++
Programs using Type Isolation, 2019.

[74] Eric W Biederman and Linux Networx. Multiple instances of the global
linux namespaces. In Proceedings of the Linux Symposium.

[75] Dionysus Blazakis. The apple sandbox. In Black Hat DC 11.

14

https://github.com/v8/v8/tree/master/tools/gcmole
https://www.openhub.net/p/chrome/analyses/latest/languages_summary
https://www.openhub.net/p/chrome/analyses/latest/languages_summary
https://portswigger.net/daily-swig/microsoft-unveils-super-duper-secure-mode-in-latest-version-of-edge
https://portswigger.net/daily-swig/microsoft-unveils-super-duper-secure-mode-in-latest-version-of-edge
https://docs.microsoft.com/en-us/windows/win32/secauthz/restricted-tokens
https://docs.microsoft.com/en-us/windows/win32/secauthz/restricted-tokens
https://microsoftedge.github.io/edgevr/posts/Super-Duper-Secure-Mode/
https://microsoftedge.github.io/edgevr/posts/Super-Duper-Secure-Mode/
https://bugzilla.redhat.com/show_bug.cgi?id=581256
https://bugzilla.redhat.com/show_bug.cgi?id=581256
https://bugzilla.mozilla.org/show_bug.cgi?id=977805
https://bugzilla.mozilla.org/show_bug.cgi?id=977805
https://bugs.chromium.org/p/chromium/issues/detail?id=506723
https://bugs.chromium.org/p/chromium/issues/detail?id=506723
https://bugs.chromium.org/p/chromium/issues/detail?id=504006
https://bugs.chromium.org/p/chromium/issues/detail?id=504006
https://bugs.chromium.org/p/chromium/issues/detail?id=596862
https://bugs.chromium.org/p/chromium/issues/detail?id=596862
https://bugs.chromium.org/p/chromium/issues/detail?id=750886
https://bugs.chromium.org/p/chromium/issues/detail?id=750886
https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/chromium/issues/detail?id=821270
https://bugs.chromium.org/p/chromium/issues/detail?id=821270
https://bugs.chromium.org/p/chromium/issues/detail?id=841001
https://bugs.chromium.org/p/chromium/issues/detail?id=841001
https://github.com/Cryptogenic/Exploit-Writeups/blob/master/WebKit/setAttributeNodeNS%20UAF%20Write-up.md
https://github.com/Cryptogenic/Exploit-Writeups/blob/master/WebKit/setAttributeNodeNS%20UAF%20Write-up.md
https://github.com/Cryptogenic/Exploit-Writeups/blob/master/WebKit/setAttributeNodeNS%20UAF%20Write-up.md
https://github.com/microsoft/ChakraCore
https://github.com/uBlockOrigin/uBlock-issues/issues/710
https://github.com/uBlockOrigin/uBlock-issues/issues/710
https://bugs.chromium.org/p/chromium/issues/detail?id=961831
https://bugs.chromium.org/p/chromium/issues/detail?id=961831
https://trac.webkit.org/wiki/JavaScriptCore
https://trac.webkit.org/wiki/JavaScriptCore
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://blog.lastpass.com/2019/09/lastpass-bug-reported-resolved/
https://blog.lastpass.com/2019/09/lastpass-bug-reported-resolved/
https://v8.dev/
https://chromium-review.googlesource.com/c/chromium/src/+/2085751
https://chromium-review.googlesource.com/c/chromium/src/+/2085751
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.zerodayinitiative.com/blog/2020/1/8/pwn2own-returns-to-vancouver-for-2020
https://www.zerodayinitiative.com/blog/2020/1/8/pwn2own-returns-to-vancouver-for-2020
https://bugs.chromium.org/p/chromium/issues/detail?id=1144662
https://bugs.chromium.org/p/chromium/issues/detail?id=1144662
https://caniuse.com/
https://bugs.chromium.org/p/chromium/issues/list
https://bugs.chromium.org/p/chromium/issues/list
https://www.chromium.org/Home/chromium-security
https://www.chromium.org/Home/chromium-security
https://chromium.googlesource.com/chromium/src
https://chromium.googlesource.com/chromium/src
https://www.first.org/cvss/
https://www.first.org/cvss/
https://deno.land/
https://deno.land/
https://bugzilla.mozilla.org/home
https://bugs.chromium.org/p/project-zero/issues/list?q=&can=1
https://bugs.chromium.org/p/project-zero/issues/list?q=&can=1
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety
https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-iemode-safer-than-ie
https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-iemode-safer-than-ie
https://hg.mozilla.org/
https://www.mozilla.org/en-US/security/advisories/
https://www.mozilla.org/en-US/security/advisories/
https://blog.mozilla.org/security/
https://nvd.nist.gov/
https://nodejs.org/en/
https://wiki.mozilla.org/Oxidation
https://googleprojectzero.blogspot.com/p/0day.html
https://googleprojectzero.blogspot.com/p/0day.html
https://firefox-source-docs.mozilla.org/dom/workersAndStorage/CodeStyle.html#plain-pointers
https://firefox-source-docs.mozilla.org/dom/workersAndStorage/CodeStyle.html#plain-pointers
https://chromium.googlesource.com/v8/v8
https://www.zerodayinitiative.com/advisories/published/
https://www.zerodayinitiative.com/advisories/published/
https://trac.webkit.org/changeset/160983/webkit
https://trac.webkit.org/changeset/160983/webkit
http://trac.webkit.org/changeset/186208/webkit/trunk/Source/WebCore/page/Performance.cpp
http://trac.webkit.org/changeset/186208/webkit/trunk/Source/WebCore/page/Performance.cpp
https://trac.webkit.org/changeset/253098/webkit
https://trac.webkit.org/changeset/253098/webkit
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_allow-jit
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_allow-jit
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/

[76] blink-dev Google Groups. Intent to implement: Shared array
buffers. https://groups.google.com/a/chromium.org/g/blink-dev/c/d-
0ibJwCS24, 2015.

[77] Google Chromium Blog. Recent Site Isolation improvements. https:
//blog.chromium.org/2019/10/recent-site-isolation-improvements.html,
2019.

[78] Google Chromium Blog. Speeding up Chrome’s release cycle. https:
//blog.chromium.org/2021/03/speeding-up-release-cycle.html, 2021.

[79] Google Security Blog. An update on memory safety in chrome.
https://security.googleblog.com/2021/09/an-update-on-memory-safety-
in-chrome.html, 2021.

[80] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an
uncooperative environment. Software: Practice and Experience.

[81] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida. Dedup est machina:
Memory deduplication as an advanced exploitation vector. In SP16.

[82] Fraser Brown, Deian Stefan, and Dawson Engler. Sys: A static/symbolic
tool for finding good bugs in good (browser) code. In USENIX Security
20.

[83] Sam Brown. Some brief notes on webkit heap hardening. https://labs.f-
secure.com/archive/some-brief-notes-on-webkit-heap-hardening/, 2018.

[84] Yinzhi Cao, Zhanhao Chen, Song Li, and Shujiang Wu. Deterministic
browser. In CCS17.

[85] R. Chris. Partitionalloc - a shallow dive and some rand, 2016. https:
//struct.github.io/.

[86] Chromium. Clamp performance.now() to 100us. https://chromium-
review.googlesource.com/c/chromium/src/+/853505, 2018.

[87] Chromium. Security: Constant blinding bypass via Wasm, 2020.
[88] ComputerWorld. Browser makers build bulwarks to stump spectre at-

tacks. https://www.computerworld.com/article/3246210/browser-makers-
build-bulwarks-to-stump-spectre-attacks.html, 2018.

[89] Crispin Cowan. Strengthening the Microsoft Edge Sandbox, 2017.
[90] Cure53. Cure53 Browser Security White Paper. https://github.com/

cure53/browser-sec-whitepaper, 2017.
[91] Sung Ta Dinh, Haehyun Cho, Kyle Martin, Adam Oest, Kyle Zeng,

Alexandros Kapravelos, Gail-Joon Ahn, Tiffany Bao, Ruoyu Wang,
Adam Doupé, et al. Favocado: Fuzzing the binding code of javascript
engines using semantically correct test cases.

[92] MDN Web Docs. Cross-origin-embedder-policy. https:
//developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-
Origin-Embedder-Policy, 2021.

[93] MDN Web Docs. Cross-origin-opener-policy. https://developer.mozilla.
org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy,
2021.

[94] MDN Web Docs. Same-origin policy. https://developer.mozilla.org/en-
US/docs/Web/Security/Same-origin_policy, 2021.

[95] eEye Digital Security. Microsoft Internet Information Services Remote
Buffer Overflow, 2001.

[96] Filip Pizlo. Introducing Riptide: WebKit’s Retreating Wavefront
Concurrent Garbage Collector. 2017.

[97] Filip Pizlo. What Spectre and Meltdown Mean For WebKit. 2018.
[98] Firefox. Always poison deallocated objects in the frame arena, 2009.

https://bugzilla.mozilla.org/show_bug.cgi?id=497495.
[99] Firefox. Exact stack rooting, 2014. https://developer.mozilla.org/en-

US/docs/Mozilla/Projects/SpiderMonkey/Internals/GC/Exact_Stack_
Rooting.

[100] Firefox. [meta] store content-controlled buffers in a separate heap, 2014.
https://bugzilla.mozilla.org/show_bug.cgi?id=1052575.

[101] Firefox. Implement win/osx sandboxing for new RDD process, 2018.
https://bugzilla.mozilla.org/show_bug.cgi?id=1498624.

[102] Firefox. Enable Code Integrity Guard on RDD Process, 2019. https:
//bugzilla.mozilla.org/show_bug.cgi?id=1563774.

[103] Fortinet. Microsoft MSHTML Remote Code Execution
Vulnerability Exploited in the Wild (CVE-2021-40444). https:
//www.fortinet.com/blog/threat-research/microsoft-mshtml-remote-
code-execution-vulnerability-exploited-in-wild-cve-2021-40444, 2021.

[104] Ivan Fratric. Dude, where’s my heap? 2015.
[105] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Grand

pwning unit: Accelerating microarchitectural attacks with the gpu. In
SP18.

[106] Robert Gawlik and Thorsten Holz. Sok: Make jit-spray great again. In
WOOT18.

[107] Guang Gong. Security: Pwn2Own mobile case, out-of-bound access in
json stringifier. In Chromium Bug Tracker, 2015.

[108] Guang Gong. Pwn a nexus device with a single vulnerability. In
CanSecWest, 2016.

[109] Google. Open sourcing clusterfuzz. https://security.googleblog.com/
2019/02/open-sourcing-clusterfuzz.html.

[110] Google. Scalable fuzzing infrastructure. https://github.com/google/
clusterfuzz.

[111] Google. Clusterfuzz. https://google.github.io/clusterfuzz/, 2015.
[112] Google. Google C++ Style Guide, 2017.
[113] Google. Torque: Applying leverage to the CodeStubAssembler, 2018.
[114] Google. Chrome - Mitigating Side-Channel Attacks, 2019. https:

//www.chromium.org/Home/chromium-security/ssca.
[115] Google. GWP-ASan: Sampling heap memory error detection in-the-

wild. https://sites.google.com/a/chromium.org/dev/Home/chromium-
security/articles/gwp-asan, 2019.

[116] Google. Chrome Vulnerability Reward Program Rules. https://www.
google.com/about/appsecurity/chrome-rewards/, 2021.

[117] Google. Chromium design docs - sandboxing. https:
//chromium.googlesource.com/chromium/src/+/refs/heads/main/
docs/design/sandbox.md, 2021.

[118] Google. wasm: Write-protection of generated code with PKEYs/PKU,
2021.

[119] Google Chrome Team. V8 Heap Sandbox - High-Level Design
Doc. https://docs.google.com/document/d/1FM4fQmIhEqPG8uGp5o9A-
mnPB5BOeScZYpkHjo0KKA8/, 2021.

[120] Samuel Groß. Pwn2Own 2018: Safari + macOS, 2018. https://github.
com/saelo/pwn2own2018.

[121] Samuel Groß and Project Zero. Jitsploitation ii: Getting read/write. https:
//googleprojectzero.blogspot.com/2020/09/jitsploitation-two.html, 2020.

[122] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. Codealchemist:
Semantics-aware code generation to find vulnerabilities in javascript
engines. In NDSS19.

[123] Abdul-Aziz Hariri, Brian Gorenc, and Simon Zuckerbraun. Abusing
Silent Mitigations: Understanding weaknesses within Internet Explorer’s
Isolated Heap and MemoryProtection. In Black Hat USA 15.

[124] Xiaoyu He, Xiaofei Xie, Yuekang Li, Jianwen Sun, Feng Li, Wei Zou,
Yang Liu, Lei Yu, Jianhua Zhou, Wenchang Shi, and Wei Huo. Sofi:
Reflection-augmented fuzzing for javascript engines. In CCS21.

[125] Christian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with code
fragments. In USENIX Security 12.

[126] Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz.
Librando: transparent code randomization for just-in-time compilers. In
CCS13.

[127] Jann Horn. Mozilla Foundation Security Advisory 2018-01, 2018.
https://www.mozilla.org/en-US/security/advisories/mfsa2018-01/.

[128] Intel. Intel® 64 and IA-32 Architectures Software Developer Manuals,
2021.

[129] Ivan Fratric. Domato - DOM fuzzer. https://github.com/
googleprojectzero/domato, 2017.

[130] James Forshaw. Breaking the Chain. https://googleprojectzero.blogspot.
com/2016/11/breaking-chain.html, 2016.

[131] Artur Janc, Charlie Reis, and Anne van Kesteren. Coop and
coep explained. https://docs.google.com/document/d/1zDlfvfTJ_
9e8Jdc8ehuV4zMEu9ySMCiTGMS9y0GU92k, 2020.

[132] Jeff Aboud. Why You Need to Stop Using CVSS for Vulnerability
Prioritization. https://www.tenable.com/blog/why-you-need-to-stop-
using-cvss-for-vulnerability-prioritization, 2020.

[133] Jeremy Fetiveau. Circumventing Chrome’s hardening of typer
bugs. https://doar-e.github.io/blog/2019/05/09/circumventing-chromes-
hardening-of-typer-bugs/.

[134] Yonghwi Jin, Jungwon Lim, Insu Yun, and Taesoo Kim. Compromising
the macOS kernel through Safari by chaining six vulnerabilities. In
Black Hat USA 20.

[135] Zihao Jin, Ziqiao Kong, Shuo Chen, and Haixin Duan. Timing-based
browsing privacy vulnerabilities via site isolation. In SP22.

[136] Joe Belfiore and Windows Experience Blog. Microsoft Edge: Making
the web better through more open source collaboration, 2018.

[137] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. Spectre attacks: Exploiting speculative execution. In
SP19.

[138] David Kohlbrenner and Hovav Shacham. Trusted browsers for uncertain
times. In USENIX Security 16.

[139] Ivan Krstić. Behind the scenes of ios and mac security. In Black Hat
USA 16.

15

https://groups.google.com/a/chromium.org/g/blink-dev/c/d-0ibJwCS24
https://groups.google.com/a/chromium.org/g/blink-dev/c/d-0ibJwCS24
https://blog.chromium.org/2019/10/recent-site-isolation-improvements.html
https://blog.chromium.org/2019/10/recent-site-isolation-improvements.html
https://blog.chromium.org/2021/03/speeding-up-release-cycle.html
https://blog.chromium.org/2021/03/speeding-up-release-cycle.html
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://labs.f-secure.com/archive/some-brief-notes-on-webkit-heap-hardening/
https://labs.f-secure.com/archive/some-brief-notes-on-webkit-heap-hardening/
https://struct.github.io/
https://struct.github.io/
https://chromium-review.googlesource.com/c/chromium/src/+/853505
https://chromium-review.googlesource.com/c/chromium/src/+/853505
https://www.computerworld.com/article/3246210/browser-makers-build-bulwarks-to-stump-spectre-attacks.html
https://www.computerworld.com/article/3246210/browser-makers-build-bulwarks-to-stump-spectre-attacks.html
https://github.com/cure53/browser-sec-whitepaper
https://github.com/cure53/browser-sec-whitepaper
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://bugzilla.mozilla.org/show_bug.cgi?id=497495
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals/GC/Exact_Stack_Rooting
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals/GC/Exact_Stack_Rooting
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals/GC/Exact_Stack_Rooting
https://bugzilla.mozilla.org/show_bug.cgi?id=1052575
https://bugzilla.mozilla.org/show_bug.cgi?id=1498624
https://bugzilla.mozilla.org/show_bug.cgi?id=1563774
https://bugzilla.mozilla.org/show_bug.cgi?id=1563774
https://www.fortinet.com/blog/threat-research/microsoft-mshtml-remote-code-execution-vulnerability-exploited-in-wild-cve-2021-40444
https://www.fortinet.com/blog/threat-research/microsoft-mshtml-remote-code-execution-vulnerability-exploited-in-wild-cve-2021-40444
https://www.fortinet.com/blog/threat-research/microsoft-mshtml-remote-code-execution-vulnerability-exploited-in-wild-cve-2021-40444
https://security.googleblog.com/2019/02/open-sourcing-clusterfuzz.html
https://security.googleblog.com/2019/02/open-sourcing-clusterfuzz.html
https://github.com/google/clusterfuzz
https://github.com/google/clusterfuzz
https://google.github.io/clusterfuzz/
https://www.chromium.org/Home/chromium-security/ssca
https://www.chromium.org/Home/chromium-security/ssca
https://sites.google.com/a/chromium.org/dev/Home/chromium-security/articles/gwp-asan
https://sites.google.com/a/chromium.org/dev/Home/chromium-security/articles/gwp-asan
https://www.google.com/about/appsecurity/chrome-rewards/
https://www.google.com/about/appsecurity/chrome-rewards/
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/design/sandbox.md
https://docs.google.com/document/d/1FM4fQmIhEqPG8uGp5o9A-mnPB5BOeScZYpkHjo0KKA8/
https://docs.google.com/document/d/1FM4fQmIhEqPG8uGp5o9A-mnPB5BOeScZYpkHjo0KKA8/
https://github.com/saelo/pwn2own2018
https://github.com/saelo/pwn2own2018
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-two.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-two.html
https://www.mozilla.org/en-US/security/advisories/mfsa2018-01/
https://github.com/googleprojectzero/domato
https://github.com/googleprojectzero/domato
https://googleprojectzero.blogspot.com/2016/11/breaking-chain.html
https://googleprojectzero.blogspot.com/2016/11/breaking-chain.html
https://docs.google.com/document/d/1zDlfvfTJ_9e8Jdc8ehuV4zMEu9ySMCiTGMS9y0GU92k
https://docs.google.com/document/d/1zDlfvfTJ_9e8Jdc8ehuV4zMEu9ySMCiTGMS9y0GU92k
https://www.tenable.com/blog/why-you-need-to-stop-using-cvss-for-vulnerability-prioritization
https://www.tenable.com/blog/why-you-need-to-stop-using-cvss-for-vulnerability-prioritization
https://doar-e.github.io/blog/2019/05/09/circumventing-chromes-hardening-of-typer-bugs/
https://doar-e.github.io/blog/2019/05/09/circumventing-chromes-hardening-of-typer-bugs/

[140] Ivan Krstić. App sandbox and the mac app store. In WWDC 2011,
2011. https://developer.apple.com/videos/play/wwdc2011/204/.

[141] The Citizen Lab. The Million Dollar Dissident: NSO Group’s
iPhone Zero-Days used against a UAE Human Rights De-
fender. https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-
zero-day-nso-group-uae/, 2016.

[142] Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong Kim. Stealing
webpages rendered on your browser by exploiting gpu vulnerabilities.
In SP14.

[143] Suyoung Lee, HyungSeok Han, Sang Kil Cha, and Sooel Son. Montage:
A neural network language model-guided javascript engine fuzzer. In
USENIX Security 20.

[144] Wilson Lian, Hovav Shacham, and Stefan Savage. A call to arms:
Understanding the costs and benefits of jit spraying mitigations. In
NDSS, 2017.

[145] Hongyang Lin, Junhu Zhu, Jianshan Peng, and Dixia Zhu. Deity:
Finding deep rooted bugs in javascript engines. In ICCT19.

[146] Linux. Seccomp BPF (SECure COMPuting with filters). 2012.
[147] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner

Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, et al. Meltdown: Reading kernel memory from user space. In
USENIX Security 18.

[148] LLVM Project. Scudo Hardened Allocator. https://llvm.org/docs/
ScudoHardenedAllocator.html, 2019.

[149] ARM LTD. ARMv8 architecture reference manual, for ARMv8-A
architecture profile (ARM DDI 0487C.a). 2017.

[150] Mads Ager and Erik Corry and Vyacheslav Egorov and Kentaro Hara
and Gustav Wibling and Ian Zerny. Oilpan: Tracing garbage collection
for blink. 2013.

[151] Adrian Marinescu. Windows vista heap management enhancements:
Security, reliability and performance. In Black Hat USA 06.

[152] Mark Brand and Sergei Glazunov and Project Zero. Analysis of CVE-
2020-16010: Chrome for Android ConvertToJavaBitmap Heap Buffer
Overflow. https://googleprojectzero.github.io/0days-in-the-wild/0day-
RCAs/2020/CVE-2020-16010.html, 2021.

[153] Mathias Bynens. Elements kinds in V8, 2017.
[154] Mathias Bynens. JavaScript engine fundamentals: Shapes and Inline

Caches, 2018.
[155] Matt Molinyawe, Abdul-Aziz Hariri, Jasiel Spelman. $hell on Earth:

From Browser to System Compromise. In Black Hat USA 16.
[156] McAfee Labs. Don’t Substitute CVSS for Risk: Scoring System Inflates

Importance of CVE-2017-3735. https://www.mcafee.com/blogs/other-
blogs/mcafee-labs/dont-substitute-cvss-for-risk-scoring-system-
inflates-importance-of-cve-2017-3735/, 2017.

[157] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and Toon
Verwaest. Spectre is here to stay: An analysis of side-channels and
speculative execution. arXiv preprint arXiv:1902.05178, 2019.

[158] Microsoft. JIT Spraying Never Dies - Bypass CFG By Leveraging
WARP Shader JIT Spraying. https://sites.google.com/site/bingsunsec/
WARPJIT.

[159] Microsoft. Control Flow Guard, 2015.
[160] Microsoft. Introducing windows defender application guard for

microsoft edge. https://blogs.windows.com/msedgedev/2016/09/27/
application-guard-microsoft-edge/, 2016.

[161] Microsoft. Microsoft defender application guard overview.
https://docs.microsoft.com/en-us/windows/security/threat-protection/
microsoft-defender-application-guard/md-app-guard-overview, 2021.

[162] Microsoft. Microsoft edge support for microsoft defender application
guard. https://docs.microsoft.com/en-us/deployedge/microsoft-edge-
security-windows-defender-application-guard, 2021.

[163] Microsoft Defender Security Research Team. Exploit kits remain a
cybercrime staple against outdated software – 2016 threat landscape
review series. https://www.microsoft.com/security/blog/2017/01/23/
exploit-kits-remain-a-cybercrime-staple-against-outdated-software-
2016-threat-landscape-review-series/, 2017.

[164] Matt Miller. Mitigating arbitrary native code execution in Mi-
crosoft Edge, 2017. https://blogs.windows.com/msedgedev/2017/02/
23/mitigating-arbitrary-native-code-execution/.

[165] Matthew R. Miller, Kenneth D. Johnson, and Timothy William Burrell.
Using virtual table protections to prevent the exploitation of object
corruption vulnerabilities.

[166] Max Moroz and Sergei Glazunov. Analysis of UXSS exploits and
mitigations in Chromium. Technical report, 2019.

[167] Mozilla. Static Analysis for Rooting and Heap Write Hazards. https:
//firefox-source-docs.mozilla.org/js/HazardAnalysis/index.html.

[168] Mozilla. Spy in the sandbox - security issue related to high resolution
time api. https://bugzilla.mozilla.org/show_bug.cgi?id=1167489, 2015.

[169] Mozilla. Plugin Roadmap for Firefox. 2016.
[170] Mozilla. Changes affecting Adobe Flash on Firefox for

Mac. https://support.mozilla.org/en-US/kb/changes-affecting-adobe-
flash-firefox-mac, 2018.

[171] Mozilla. Mitigations landing for new class of timing at-
tack. https://blog.mozilla.org/security/2018/01/03/mitigations-landing-
new-class-timing-attack/, 2018.

[172] Mozilla. Firefox 79 for developers. https://developer.mozilla.org/en-
US/docs/Mozilla/Firefox/Releases/79#javascript, 2020.

[173] Mozilla. Security Bug Approval Process. https://firefox-source-docs.
mozilla.org/bug-mgmt/processes/security-approval.html, 2020.

[174] Mozilla. Introducing site isolation in firefox. https://blog.mozilla.org/
security/2021/05/18/introducing-site-isolation-in-firefox/, 2021.

[175] Mozilla. Project fission - mozillawiki. https://wiki.mozilla.org/Project_
Fission, 2021.

[176] Mozilla. Security Bug Bounty Program. https://www.mozilla.org/en-
US/security/bug-bounty/, 2021.

[177] Paul Muntean, Matthias Neumayer, Zhiqiang Lin, Gang Tan, Jens
Grossklags, and Claudia Eckert. Analyzing Control Flow Integrity with
LLVM-CFI. In ACSAC19.

[178] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu-
Ghazaleh. Rendered insecure: Gpu side channel attacks are practical.
In CCS18.

[179] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Ange-
los D Keromytis. The spy in the sandbox: Practical cache attacks in
javascript and their implications. In CCS15.

[180] Chris Paget. Exploiting design flaws in the Win32 API for privilege
escalation. White Paper, 2002.

[181] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, An-
dreas Zinnen, Martin Henze, and Klaus Wehrle. Website fingerprinting
at internet scale. In NDSS16.

[182] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. Fuzzing
javascript engines with aspect-preserving mutation. In SP20.

[183] phoenhex team. CVE-2018-4233 Exploit. https://github.com/phoenhex/
files/blob/master/exploits/ios-11.3.1/, 2018.

[184] The Chromium Project. Miracleptr aka raw_ptr aka
backuprefptr. https://chromium.googlesource.com/chromium/src/
+/ddc017f9569973a731a574be4199d8400616f5a5/base/memory/raw_
ptr.md, 2021.

[185] The Chromium Project. Miracleptr one pager. https:
//docs.google.com/document/d/1pnnOAIz_DMWDI4oIOFoMAqLnf_
MZ2GsrJNb_dbQ3ZBg, 2021.

[186] Charles Reis, Alexander Moshchuk, and Nasko Oskov. Site isolation:
Process separation for web sites within the browser. In USENIX Security
19.

[187] Thomas Rokicki, Clémentine Maurice, and Pierre Laperdrix. Sok: In
search of lost time: A review of javascript timers in browsers. In
EuroSP21.

[188] Paul Sabanal and Mark Vincent Yason. Digging deep into the flash
sandboxes.

[189] Saelo. Attacking JavaScript Engines: A case study of JavaScriptCore
and CVE-2016-4622. http://www.phrack.org/issues/70/3.html, 2016.

[190] Saelo. Compile Your Own Type Confusions: Exploiting Logic Bugs in
JavaScript JIT Engines. http://phrack.org/issues/70/9.html, 2019.

[191] Christopher Salls, Chani Jindal, Jake Corina, Christopher Kruegel, and
Giovanni Vigna. Token-level fuzzing. In USENIX Security 21.

[192] Samuel Groß. New Trends in Browser Exploitation: Attacking Client-
Side JIT Compilers. In Black Hat USA 18.

[193] Samuel Groß and Project Zero. JSC Exploits. https://googleprojectzero.
blogspot.com/2019/08/jsc-exploits.html, 2019.

[194] Michael Schwarz, Moritz Lipp, and Daniel Gruss. Javascript zero: Real
javascript and zero side-channel attacks. In NDSS18.

[195] SecureList. Chrome 0-day exploit CVE-2019-13720 used in Operation
WizardOpium. https://securelist.com/chrome-0-day-exploit-cve-2019-
13720-used-in-operation-wizardopium/94866/, 2019.

[196] SecureList. PuzzleMaker attacks with Chrome zero-day exploit
chain. https://securelist.com/puzzlemaker-chrome-zero-day-exploit-
chain/102771/, 2021.

16

https://developer.apple.com/videos/play/wwdc2011/204/
https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/
https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/
https://llvm.org/docs/ScudoHardenedAllocator.html
https://llvm.org/docs/ScudoHardenedAllocator.html
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2020/CVE-2020-16010.html
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2020/CVE-2020-16010.html
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/dont-substitute-cvss-for-risk-scoring-system-inflates-importance-of-cve-2017-3735/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/dont-substitute-cvss-for-risk-scoring-system-inflates-importance-of-cve-2017-3735/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/dont-substitute-cvss-for-risk-scoring-system-inflates-importance-of-cve-2017-3735/
https://sites.google.com/site/bingsunsec/WARPJIT
https://sites.google.com/site/bingsunsec/WARPJIT
https://blogs.windows.com/msedgedev/2016/09/27/application-guard-microsoft-edge/
https://blogs.windows.com/msedgedev/2016/09/27/application-guard-microsoft-edge/
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-application-guard/md-app-guard-overview
https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-windows-defender-application-guard
https://docs.microsoft.com/en-us/deployedge/microsoft-edge-security-windows-defender-application-guard
https://www.microsoft.com/security/blog/2017/01/23/exploit-kits-remain-a-cybercrime-staple-against-outdated-software-2016-threat-landscape-review-series/
https://www.microsoft.com/security/blog/2017/01/23/exploit-kits-remain-a-cybercrime-staple-against-outdated-software-2016-threat-landscape-review-series/
https://www.microsoft.com/security/blog/2017/01/23/exploit-kits-remain-a-cybercrime-staple-against-outdated-software-2016-threat-landscape-review-series/
https://blogs.windows.com/msedgedev/2017/02/23/mitigating-arbitrary-native-code-execution/
https://blogs.windows.com/msedgedev/2017/02/23/mitigating-arbitrary-native-code-execution/
https://firefox-source-docs.mozilla.org/js/HazardAnalysis/index.html
https://firefox-source-docs.mozilla.org/js/HazardAnalysis/index.html
https://bugzilla.mozilla.org/show_bug.cgi?id=1167489
https://support.mozilla.org/en-US/kb/changes-affecting-adobe-flash-firefox-mac
https://support.mozilla.org/en-US/kb/changes-affecting-adobe-flash-firefox-mac
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Releases/79#javascript
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Releases/79#javascript
https://firefox-source-docs.mozilla.org/bug-mgmt/processes/security-approval.html
https://firefox-source-docs.mozilla.org/bug-mgmt/processes/security-approval.html
https://blog.mozilla.org/security/2021/05/18/introducing-site-isolation-in-firefox/
https://blog.mozilla.org/security/2021/05/18/introducing-site-isolation-in-firefox/
https://wiki.mozilla.org/Project_Fission
https://wiki.mozilla.org/Project_Fission
https://www.mozilla.org/en-US/security/bug-bounty/
https://www.mozilla.org/en-US/security/bug-bounty/
https://github.com/phoenhex/files/blob/master/exploits/ios-11.3.1/
https://github.com/phoenhex/files/blob/master/exploits/ios-11.3.1/
https://chromium.googlesource.com/chromium/src/+/ddc017f9569973a731a574be4199d8400616f5a5/base/memory/raw_ptr.md
https://chromium.googlesource.com/chromium/src/+/ddc017f9569973a731a574be4199d8400616f5a5/base/memory/raw_ptr.md
https://chromium.googlesource.com/chromium/src/+/ddc017f9569973a731a574be4199d8400616f5a5/base/memory/raw_ptr.md
https://docs.google.com/document/d/1pnnOAIz_DMWDI4oIOFoMAqLnf_MZ2GsrJNb_dbQ3ZBg
https://docs.google.com/document/d/1pnnOAIz_DMWDI4oIOFoMAqLnf_MZ2GsrJNb_dbQ3ZBg
https://docs.google.com/document/d/1pnnOAIz_DMWDI4oIOFoMAqLnf_MZ2GsrJNb_dbQ3ZBg
http://www.phrack.org/issues/70/3.html
http://phrack.org/issues/70/9.html
https://googleprojectzero.blogspot.com/2019/08/jsc-exploits.html
https://googleprojectzero.blogspot.com/2019/08/jsc-exploits.html
https://securelist.com/chrome-0-day-exploit-cve-2019-13720-used-in-operation-wizardopium/94866/
https://securelist.com/chrome-0-day-exploit-cve-2019-13720-used-in-operation-wizardopium/94866/
https://securelist.com/puzzlemaker-chrome-zero-day-exploit-chain/102771/
https://securelist.com/puzzlemaker-chrome-zero-day-exploit-chain/102771/

[197] Anatoly Shusterman, Daniel Genkin, Ayush Agarwal, Yossi Oren,
Sioli O’Connell, and Yuval Yarom. Prime + Probe 1, JavaScript 0:
Overcoming Browser-based Side-Channel Defenses.

[198] siguza. APRR | Apple hardware secrets. https://siguza.github.io/APRR/,
2019.

[199] Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright. Deep
fingerprinting: Undermining website fingerprinting defenses with deep
learning. CCS18.

[200] Stephen Smalley, Chris Vance, and Wayne Salamon. Implementing
selinux as a linux security module. NAI Labs Report.

[201] Michael Smith, Craig Disselkoen, Shravan Narayan, Fraser Brown, and
Deian Stefan. Browser history re: visited. In WOOT18.

[202] Peter Snyder, Cynthia Taylor, and Chris Kanich. Most websites don’t
need to vibrate: A cost-benefit approach to improving browser security.
In CCS17.

[203] Brave Software. Brave Browser: Secure, Fast & Private Web Browser
with AdBlocker. https://brave.com, 2021.

[204] WebKit Source. Structureid randomization. https://github.com/WebKit/
WebKit/blob/main/Source/JavaScriptCore/runtime/StructureIDTable.h,
2021.

[205] Spring, Jonathan and Hatleback, Eric and Householder, Allen D. and
Manion, Art and Shick, Deana. Towards Improving CVSS. https:
//resources.sei.cmu.edu/library/asset-view.cfm?assetid=538368, 2018.

[206] Statcounter Global Stats. Browser Market Share Worldwide, 2021.
[207] Sven Morgenroth. Goodbye XSS Auditor. https://www.netsparker.com/

blog/web-security/goodbye-xss-auditor/, 2019.
[208] Google Threat Analysis Group (TAG). How we protect users from

0-day attacks. https://blog.google/threat-analysis-group/how-we-protect-
users-0-day-attacks/, 2021.

[209] Microsoft Edge Team. Mitigating speculative execution
side-channel attacks in microsoft edge and internet explorer.
https://blogs.windows.com/msedgedev/2018/01/03/speculative-
execution-mitigations-microsoft-edge-internet-explorer/, 2018.

[210] The Chromium Team. The Chromium Project. http://www.chromium.
org/Home, 2021.

[211] Ars Technica. Firefox 0-day in the wild is being used to attack Tor users.
https://arstechnica.com/information-technology/2016/11/firefox-0day-
used-against-tor-users-almost-identical-to-one-fbi-used-in-2013/,
2016.

[212] The Chromium Team. Safer Usage Of C++, 2021.
[213] Inc. The Tor Project. Tor Project | Anonymity Online. https://www.

torproject.org, 2021.
[214] Trishita Tiwari and Ari Trachtenberg. Alternative (ab) uses for HTTP

Alternative Services. In WOOT19.
[215] Tom Ritter. Bug Bounty Program Updates: Adding (another) New

Class of Bounties. https://blog.mozilla.org/attack-and-defense/2020/08/
18/exploit-mitigation-bounty/, 2020.

[216] Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. The clock is
still ticking: Timing attacks in the modern web. In CCS15.

[217] Tom Van Goethem, Christina Pöpper, Wouter Joosen, and Mathy
Vanhoef. Timeless timing attacks: Exploiting concurrency to leak
secrets over remote connections. In USENIX Security 20.

[218] Pepe Vila and Boris Köpf. Loophole: Timing attacks on shared event
loops in chrome. In USENIX Security 17.

[219] W3C. Standards - W3C. https://www.w3.org/standards/, 2021.
[220] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Superion: Grammar-

aware greybox fuzzing. In ICSE19.
[221] Yong Wang. Thinking outside the JIT Compiler: Understanding and

bypassing StructureID Randomization with generic and old-school
methods. In Black Hat USA 19.

[222] Tao Wei, Tielei Wang, Lei Duan, and Jing Luo. Secure dynamic code
generation against spraying. In CCS10.

[223] WeLiveSecurity. Brave browser’s Tor mode exposed users’ dark web
activity. https://www.welivesecurity.com/2021/02/22/brave-browser-tor-
mode-exposed-dark-web-activity/, 2021.

[224] WHATWG. Web Hypertext Application Technology Working Group
(WHATWG). https://whatwg.org/, 2021.

[225] Rui Wu, Ping Chen, Bing Mao, and Li Xie. Rim: A method to defend
from jit spraying attack. In ARES12.

[226] X41. X41 Browser Security White Paper. https://browser-security.x41-
dsec.de/X41-Browser-Security-White-Paper.pdf, 2017.

[227] Wen Xu, Soyeon Park, and Taesoo Kim. Freedom: Engineering a
state-of-the-art dom fuzzer. In CCS20.

[228] Mark Vincent Yason. Understanding the Attack Surface and Attack
Resilience of Project Spartan’s (Edge) New EdgeHTML Rendering
Engine.

[229] Zhang Yunhai. Bypass control flow guard comprehensively. In Black
Hat USA 15.

[230] Google Project Zero. A very deep dive into iOS Exploit chains found in
the wild. https://googleprojectzero.blogspot.com/2019/08/a-very-deep-
dive-into-ios-exploit.html, 2019.

[231] Google Project Zero. In-the-Wild Series: Chrome Exploits.
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-
chrome-exploits.html, 2021.

[232] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres,
Stephen McCamant, Dawn Song, and Wei Zou. Practical control flow
integrity and randomization for binary executables. In SP13.

APPENDIX

A. Table of Bug-finding Tools

We summarize the papers about browser fuzzers in the past
decade in Table VI.

B. Privacy-preserving Browsers

One of the most concerning privacy leakages in web brows-
ing is the user’s IP address. As web servers can easily collect
and store the IP, the user’s geolocation can be instantly exposed
with fine granularity depending on network circumstances (e.g.,
NAT). The Tor browser [213] addresses this problem with the
onion protocol, which re-routes the user’s connection using
multiple random nodes in the Tor network, and each node
cannot know the user’s identity (IP) and the destination at the
same time. However, privacy can still be breached via website
fingerprinting techniques by observing the encrypted network
packet sequences [181], [199]. Another browser, Brave [203],
prevents websites from tracking users by removing all ads
and ad trackers contained in websites, but the user’s browsing
history can still be leaked [214], [223].

C. Plugins and Extensions

Plugins and extensions are small software programs that
customize the the browser’s functionality by offering a wide
variety of features. Plugins such as Java and Flash operate
within the context of web pages, whereas extensions attach
additional features to browsers. Despite their benefits, plugins
are major sources of browser instability [8], [9]. Plugins also
make sandboxing the renderer process impractical, as plugins
are written by third-parties and browser vendors have no control
over their access to the operating system. Also, extensions have
special privileges within the browser, making them appealing
targets for attackers [10]–[12].
NPAPI plugins. NPAPI allows browser vendors to develop
plugins with a common interface. When the browser visits a
page with an unknown content type, it searches for and loads
the available plugin to delegate the content processing. As
a result, attackers can trigger a vulnerability by assigning a
specific content type to a web page that fools the browser
into loading a specific plugin that has a vulnerability. Attacks
on NPAPI plugins had been prevalent over different browsers
and platforms, especially on Java, Flash, and PDF [163]. To
mitigate the problem, browsers separated the plugin process
from the browser’s main process, namely out-of-process plugin

17

https://siguza.github.io/APRR/
https://brave.com
https://github.com/WebKit/WebKit/blob/main/Source/JavaScriptCore/runtime/StructureIDTable.h
https://github.com/WebKit/WebKit/blob/main/Source/JavaScriptCore/runtime/StructureIDTable.h
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=538368
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=538368
https://www.netsparker.com/blog/web-security/goodbye-xss-auditor/
https://www.netsparker.com/blog/web-security/goodbye-xss-auditor/
https://blog.google/threat-analysis-group/how-we-protect-users-0-day-attacks/
https://blog.google/threat-analysis-group/how-we-protect-users-0-day-attacks/
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
http://www.chromium.org/Home
http://www.chromium.org/Home
https://arstechnica.com/information-technology/2016/11/firefox-0day-used-against-tor-users-almost-identical-to-one-fbi-used-in-2013/
https://arstechnica.com/information-technology/2016/11/firefox-0day-used-against-tor-users-almost-identical-to-one-fbi-used-in-2013/
https://www.torproject.org
https://www.torproject.org
https://blog.mozilla.org/attack-and-defense/2020/08/18/exploit-mitigation-bounty/
https://blog.mozilla.org/attack-and-defense/2020/08/18/exploit-mitigation-bounty/
https://www.w3.org/standards/
https://www.welivesecurity.com/2021/02/22/brave-browser-tor-mode-exposed-dark-web-activity/
https://www.welivesecurity.com/2021/02/22/brave-browser-tor-mode-exposed-dark-web-activity/
https://whatwg.org/
https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-exploits.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-exploits.html

G: Generational, M: Mutational, SM: Semantic Aware, SN: Syntactic Aware, Cov: Coverage Feedback,
OS: Open Source, C: Chrome, FF: Firefox, S: Safari, E†: Edge based on V8, E‡: Edge based on ChakraCore

Fuzzer Year C+E† FF S E‡ G M SM SN Cov OS Key Techniques

SoFi [124] 2021 1 5 1 18 ✗ ✓ ✓ ✓ ✓ ✗ Uses fine-grained program analysis and repair strategy to generate semantically valid inputs
Token-Level Fuzzing [191] 2021 16 3 4 6 ✗ ✓ ✗ ✗ ✓ ✗ Applies mutation at token-level by changing or replacing entire words
Favocado [91] 2021 8 NA 5 NA ✗ ✓ ✓ ✓ ✗ ✓ Generates test cases based on semantic information, and tracking states mutation
DIE [182] 2020 4 NA 16 28 ✓ ✓ ✓ ✓ ✓ ✓ Preserves beneficial properties and conditions called aspects across mutation
FREEDOM [227] 2020 4 5 13 NA ✓ ✓ ✓ ✓ ✓ ✓ Uses customized IR (FD-IR) to describe HTML documents and to define mutation
Montage [143] 2020 1 0 2 34 ✗ ✓ ✓ ✓ ✗ ✓ Transforms JS ASTs into sequences to train Neural Network Language Models (NNLMs)
Nautilus [70] 2019 NA NA NA 2 ✗ ✓ ✗ ✓ ✓ ✓ Combines grammar-based input generation with coverage feedback
Deity [145] 2019 NA NA 1 1 ✓ ✓ ✗ ✓ ✓ ✓ Generates syntactic JS code using previously known bugs and PoCs
Superion [220] 2019 NA NA 16 3 ✗ ✓ ✗ ✓ ✓ ✓ Employs grammar-aware test input trimming with tree and dictionary-based mutation
CodeAlchemist [122] 2019 2 NA 10 7 ✓ ✗ ✓ ✓ ✗ ✓ Tags code bricks with constraints defining when to combine with other code bricks
LangFuzz [125] 2012 11 20 NA NA ✓ ✓ ✓ ✓ ✗ ✗ Generates grammar-aware test inputs, and leverages previously known faulty programs
Total 42 23 54 81

TABLE VI: Comparison of browser engine fuzzers.

mitigation [170], [188]. However, plugins could still be used
for browser exploitation and were accused of being the reason
for performance degradation browser crashes. As a result, all
browsers discontinued support for NPAPI plugins [169].

D. Difficulty of Deploying Mitigations

It is difficult for browser vendors to deploy mitigations for
the following reasons:
a) Compatibility. Third-party code such as browser plugins
depend on the browser code to function correctly. When
introducing browser mitigations, it is possible to break third-
party code, which browser vendors have no control over. For
example, when trying to introduce Win32k lockdown for the
Pepper Plugin API (PPAPI) for Chrome in Windows, there was
a stability issue when applying the patch on Windows 8.1 and
below, which the Chrome team could not track down [130],
affecting plugins such as Flash, PDFium, and Widevine. As a
result, PPAPI Win32k lockdown was only enabled for Windows
10 and not Windows 8/8.1 to avoid stability issues.
b) Performance. Adding security mitigations is expensive. To
mitigate security threats, browser vendors sometimes choose to
trade performance for security or vice versa. For example,
the disabling of SharedArrayBuffer (SAB) in all modern
browsers in early 2018 as a countermeasure for the Spectre
attack, as discussed in §IV-D, greatly jeopardizes performance
because SAB was originally designed to achieve lightweight
synchronization between workers [76].
c) Security. More code usually means more security vulner-
abilities. Often, introducing mitigations or patches increases
the attack surfaces. After deploying new patches to browsers,
browser vendors often look for bug reports to address the
new security issues as soon as possible. For instance, Firefox
launched a whole new class of bug bounties only for security
vulnerabilities in active mitigations [215].
Reverted mitigations. Some mitigations are deployed tem-
porarily to mitigate immediate threats while better mitigations
are being developed. For example, in the SAB case mentioned
above, shortly after the introduction of more robust counter-
measures, i.e., Site Isolation and COOP/COEP, Chrome and
Firefox re-enabled the use of SAB [27], [172]. Despite all the
efforts to ensure that the mitigations are safe, performant, and
compatible, sometimes mitigations have to be rolled back due
to some severe consequences they introduce. For example, in

Table IV, XSS Auditor [72], an inbuilt XSS filter for Chrome,
suffered from many security side-effects, which led to its
retirement in 2019 [207].

18

	I Introduction
	II Modern Browser Architecture
	II-A Overview
	II-B Differences in Browsers
	II-C Variances in Sandbox Schemes
	II-D Exploiting Browsers

	III Browser Vulnerabilities and Mitigations
	III-A Trends of Browser Bugs
	III-B Parser Bugs
	III-C DOM Bugs
	III-D JS Engine Bugs
	III-E SOP-Bypass and UXSS Bugs
	III-F Summary

	IV More Security Mitigations in Browsers
	IV-A Sandbox
	IV-B Hardened Allocators
	IV-C Control-Flow Integrity
	IV-D Side Channels
	IV-E Other Mitigation Efforts

	V Case Study: Full-chain Exploits
	VI Discussion
	VI-A Patch-gapping Problems
	VI-B Homogeneity of Browser Engines
	VI-C Bug-finding Tools
	VI-D Proactive Mitigations

	VII Conclusion
	References
	Appendix
	A Table of Bug-finding Tools
	B Privacy-preserving Browsers
	C Plugins and Extensions
	D Difficulty of Deploying Mitigations

